Plastics compounding and polymer processing fundamentals, machines, equipment, application technology
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Munich
Carl Hanser Verlag
[2022]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV047639942 | ||
003 | DE-604 | ||
005 | 20221012 | ||
007 | t | ||
008 | 211214s2022 gw a||| |||| 00||| ger d | ||
015 | |a 21,N20 |2 dnb | ||
016 | 7 | |a 1233373307 |2 DE-101 | |
020 | |a 9781569908372 |c : circa EUR 299.99 (DE) (freier Preis), circa EUR 308.40 (AT) (freier Preis) |9 978-1-56990-837-2 | ||
020 | |a 1569908370 |9 1-56990-837-0 | ||
024 | 3 | |a 9781569908372 | |
028 | 5 | 2 | |a Bestellnummer: 559/00837 |
035 | |a (OCoLC)1289758432 | ||
035 | |a (DE-599)DNB1233373307 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a ger | |
044 | |a gw |c XA-DE | ||
049 | |a DE-210 |a DE-12 |a DE-91 |a DE-83 |a DE-703 | ||
084 | |a ZM 5200 |0 (DE-625)158892: |2 rvk | ||
084 | |a UV 9240 |0 (DE-625)146923: |2 rvk | ||
084 | |a 660 |2 23sdnb | ||
084 | |a CIT 719 |2 stub | ||
100 | 1 | |a Kohlgrüber, Klemens |d 1952- |e Verfasser |0 (DE-588)1121710018 |4 aut | |
245 | 1 | 0 | |a Plastics compounding and polymer processing |b fundamentals, machines, equipment, application technology |c Klemens Kohlgrüber, Michael Bierdel, Harald Rust |
264 | 1 | |a Munich |b Carl Hanser Verlag |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a XXXI, 846 Seiten |b Illustrationen, Diagramme |c 25 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Kunststoffverarbeitung |0 (DE-588)4114335-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Compoundierverfahren |0 (DE-588)4520145-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Aufbereitung |0 (DE-588)4003500-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polymercompound |0 (DE-588)4348644-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polymere |0 (DE-588)4046699-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kunststoff |0 (DE-588)4033676-1 |2 gnd |9 rswk-swf |
653 | |a Compunding | ||
653 | |a Plastics Production | ||
653 | |a Preparation | ||
653 | |a FBKTCOMP: Mischen und Compoundieren | ||
653 | |a PLAS2021 | ||
689 | 0 | 0 | |a Kunststoffverarbeitung |0 (DE-588)4114335-8 |D s |
689 | 0 | 1 | |a Polymercompound |0 (DE-588)4348644-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Kunststoff |0 (DE-588)4033676-1 |D s |
689 | 1 | 1 | |a Aufbereitung |0 (DE-588)4003500-1 |D s |
689 | 1 | 2 | |a Compoundierverfahren |0 (DE-588)4520145-6 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Polymere |0 (DE-588)4046699-1 |D s |
689 | 2 | 1 | |a Kunststoff |0 (DE-588)4033676-1 |D s |
689 | 2 | 2 | |a Aufbereitung |0 (DE-588)4003500-1 |D s |
689 | 2 | 3 | |a Aufbereitung |0 (DE-588)4003500-1 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Bierdel, Michael |e Verfasser |0 (DE-588)1198139943 |4 aut | |
700 | 1 | |a Rust, Harald |d 1949-2021 |e Verfasser |0 (DE-588)1198140313 |4 aut | |
710 | 2 | |a Hanser Publications |0 (DE-588)1064064051 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-56990-838-9 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033024149&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033024149 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0001/2022 A 1615 |
---|---|
DE-BY-TUM_katkey | 2620275 |
DE-BY-TUM_media_number | 040009281414 |
_version_ | 1816714778289111040 |
adam_text | CONTENTS
THE
AUTHORS
...............................................................
V
IN
MEMORIAM
..........................................................................................
IX
PREFACE
.....................................................................................................
XI
PART
A
INTRODUCTION
TO
THE
PROCESSING
OF
POLYMERS
.......................
1
1
INTRODUCTION
....................................................................................
3
KLEMENS
KOHLGRIIBER,
MICHAEL
BIERDEL
1.1
PLASTICS
AND
THEIR
IMPORTANCE
.................................................................
3
1.2
PROCESSING AND
COMPOUNDING
...................................................................
4
1.3
RECYCLING
OF
PLASTICS
...................................................................................
5
1.4
GUIDE
TO
THE
INDIVIDUAL
CHAPTERS
OF
THIS
BOOK
........................................
7
2
POLYMER
PROCESSING
-
PROCESS
TECHNOLOGY
OF
POLYMER
PRODUCTION
......................................................................................
9
KLEMENS
KOHLGRIIBER
2.1
INTRODUCTION
...............................................................................................
9
2.2
POLYMER
PROCESSING
DURING
THE
POLYMER
SYNTHESIS
IN
THE
PRIMARY
PRODUCTION
...................................................................................................
14
2.3
POLYMER
PROCESSING
AFTER
THE
POLYMER
PRODUCTION
-
COMPOUNDING
....
17
2.3.1
MAIN
TEMPERATURE
WINDOW
WHEN
COMPOUNDING
FOR
FINISH
MIXTURE
.............................................................................
18
2.3.2
MIXING
IN
THE
EXTRUDER
...............................................................
19
2.3.3
TEMPERATURE
AND
TIME
LIMITS
FOR
COMPOUNDING
........................
22
2.3.4
CHALLENGES
WHEN
COMPOUNDING
.................................................
25
2.3.5
ENERGY
REQUIREMENT
WHEN
COMPOUNDING
..................................
28
2.3.6 RANGE
OF
PERFORMANCE
OF
EXTRUDER
.............................................
32
2.3.7
THROUGHPUT
AND
PERFORMANCE
DENSITY
.......................................
35
2.3.8
PERFORMANCE
DENSITY
IN
THE
MELT
AREA
........................................
39
2.3.9
ENERGY
BALANCE
AND
PRODUCT
DISCHARGE
TEMPERATURE
................
40
2.3.10
STATIC
MIXERS
.................................................................................
46
2.3.11
MIXING
PERFORMANCE,
MIXING
QUALITY,
CROSS
MIXING,
LONGITUDINAL
MIXING
.....................................................................
49
2.3.11.1
MIXING
PERFORMANCE
....................................................
49
2.3.11.2
MIXING
PERFORMANCE
AND
MIXING
QUALITY
..................
51
2.3.11.3
CROSS
AND
LONGITUDINAL
MIXING
...................................
53
2.3.11.4
RESIDENCE
TIME
DISTRIBUTION
......................................
54
2.3.11.5
MEAN
RESIDENCE
TIME
..................................................
58
PART
B
PROCESSING
IN
POLYMER
PRODUCTION
......................................
61
3
DEVOLATILIZING
DEVICES
...................................................................
63
3.1
FUNDAMENTALS
OF
DEVOLATILIZATION
..............................................................
63
HEINO
THIELE
3.1.1
PHASE
EQUILIBRIUM
.......................................................................
65
3.1.2
MACROSCOPIC
MASS
AND
ENERGY
BALANCE
......................................
68
3.1.3
QUANTITIES
INFLUENCING
THE
CHANGE
IN
CONCENTRATION
.................
69
3.1.4
GENERAL
CONCLUSIONS
.....................................................................
79
3.2
POLYMER
PRODUCTION
AND
DEGASSING
TASKS
................................................
81
KLEMENS
KOHLGRIIBER
3.2.1
GENERAL
CHALLENGES
AT
THE
DEGASSING
OF
VOLATILES
FROM
POLYMERS
.......................................................................................
82
3.2.2
SPECIAL
FEATURES
AT
THE
DEGASSING
OF
POLYMERS
WITH
HIGH
CONTENT
OF
VOLATILES
AND
LIMITATION
OF
FINISH
DEGASSING
..
83
3.3
OVERVIEW
OF
DEVICES
AND
MACHINES
FOR
COMPOUNDING
WITH
POLYMER
DEGASSING
...................................................................................................
84
KLEMENS
KOHLGRIIBER
3.3.1
INTRODUCTION
...................................................................................
84
3.3.2
DEVICES
WITH
ROTATING
COMPONENTS
AND
MACHINES
....................
86
3.4
APPARATUS-BASED
POLYMER EVAPORATION
....................................................
90
KLEMENS
KOHLGRIIBER
3.4.1
TUBE
EVAPORATOR
...........................................................................
91
3.4.2
PROCESS
AND
DEVICES
FOR
FINISH
DEGASSING
FOR
VERY
LOW
RESIDUAL
CONTENTS
IN
THE
POLYMER
................................................
98
3.4.3
GENERAL
SCHEME
OF
AN
APPARATUS-BASED
EVAPORATION
STAGE
....
103
3.4.4
PRODUCT
QUALITY
.............................................................................
104
3.5
DEGASSING
OF
POLYMERS
IN
PURGE
BINS
.......................................................
108
HARALD
WILMS,
HANS
SCHNEIDER
3.5.1
INTRODUCTION
...................................................................................
108
3.5.2
PROCESS
REQUIREMENTS
FOR
DEGASSING
OF
SOLIDS
..........................
109
3.5.3
BASICS
OF
PARTICLE
DEGASSSING
.....................................................
110
3.5.4
DETERMINATION
OF
DEGASSING
PROCESS
PARAMETERS
......................
112
3.5.4.1
OVEN
TESTS
.....................................................................
114
3.5.4.2
BATCH
TRIALS
...................................................................
114
3.5.4.3
PILOT
PLANT
TESTS
.....................................
114
3.5.4.4
CRITERIA
FOR
THE
GAS
FLOW
RATE
FOR
DEGASSING
............
116
3.5.5
DESIGN
REQUIREMENTS
FOR
THE
DEGASSING
SILO
..............................
116
3.5.6
HEATING
OF
BULK
SOLIDS
.................................................................
119
3.5.7
ENERGY-EFFICIENT
PLANT
CONCEPTS
.................................................
120
3.5.8
COMPARABLE
APPLICATIONS
.............................................................
121
3.5.9
SUMMARY
.......................
121
PART
C
PROCESSING
AFTER
POLYMER
PRODUCTION
-
COMPOUNDING
...
123
4
REQUIREMENTS,
PRODUCT
DEVELOPMENT,
ADDITIVES,
SOURCES
OF
FAULTS
........................................................
125
4.1
COMPOUNDING
REQUIREMENTS
FROM
THE
COMPOUNDER
S
PERSPECTIVE
....
125
THOMAS
SCHULDT
4.1.1
INTRODUCTION
...................................................................................
125
4.1.2 ECONOMICS
.....................................................................................
125
4.1.3
TECHNICAL
REQUIREMENTS
ALONG
THE
PROCESS
CHAIN
....................
127
4.1.3.1
MATERIAL
HANDLING
.......................................................
127
4.1.3.2
RAW
MATERIAL
PRE-TREATMENT
........................................
129
4.1.3.3
PREMIXING
......................................................................
129
4.1.3.4
EXTRUDER
AND
WEAR
.......................................................
131
4.1.3.5
COOLING
AND
PELLETIZING
................................................
135
4.1.3.6
PACKAGING
......................................................................
136
4.1.4
QUALITY
CONTROL
.............................................................................
137
4.1.5
ENVIRONMENTAL
ASPECTS
...............................................................
139
4.1.6
CONCLUSIONS
...................................................................................
139
4.2
PRODUCT
DEVELOPMENT
.................................................................................
140
THOMAS
SCHULDT
4.2.1
INTRODUCTION
...................................................................................
140
4.2.2
TYPES
OF
PRODUCT
DEVELOPMENT
...................................................
140
4.2.3
BUILDING
BLOCKS
OF
PRODUCT
DEVELOPMENT
....................................
142
4.2.3.1
EQUIPMENT
TECHNOLOGY
...............................................
143
4.2.3.2
PROCESS
TECHNOLOGY
......................................................
143
4.2.3.3
FORMULATION
..................................................................
143
4.2.4
INGREDIENTS
...................................................................................
144
4.2.4.1
ADDITIVES
........................................................................
144
4.2.4.2
FILLERS
...........................................................................
145
4.2.4.3
PIGMENTS
........................................................................
146
4.2.5
INNOVATION
.....................................................................................
148
4.2.6
QUALITY
CONTROL
..............................................................................
149
4.2.7
SCALE-UP
.........................................................................................
150
4.3
ADDITIVES
FOR
POLYMERS
-
FROM
POLYMER
TO
PLASTIC
..................................
152
HERMANN
DIEM
4.3.1
BLENDS
...........................................................................................
152
4.3.1.1
DEFINITION
OF
BLENDS
.......................................................
152
4.3.1.2
CLASSIFICATION
OF
MULTI-PHASE
SYSTEMS
........................
153
4.3.1.2.1
POLYMER
BLENDS
................................
153
4.3.1.2.2
DRY
BLENDS
................................................
155
4.3.2
ADDITIVES
.......................................................................................
155
4.3.2.1
DEFINITION
OF
ADDITIVES
...................................................
155
4.3.2.2
EFFECTS
AND
MODE
OF
OPERATION
OF
THE
ADDITIVES
........
156
4.3.2.2.1
PLASTICIZERS
................................................
156
4.3.2.2.2
STABILIZERS
..................................................
156
4.3.2.3
INCORPORATION
OF
ADDITIVES
INTO
POLYMERS
..................
158
4.3.3
FILLERS
.............................................................................................
159
4.3.3.1
DEFINITION
OF
FILLERS
......................................................
159
4.3.3.2
CLASSIFICATION
AND
PROPERTIES
OF
FILLERS
.......................
159
4.3.3.3
ASPECT
RATIO
..................................................................
160
4.4
PRACTICAL
EXAMPLES
REGARDING
SOURCES
OF
FAULL/AVOIDANCE
OF
FAULTS
DURING
COMPOUNDING
....................................................................
161
KLEMENS
KOHLGRIIBER
4.4.1
BLACK
SPECKS
.................................................................................
163
4.4.2
SOURCES
AT
DOSING
AND
MIXING
......................................................
167
4.4.2.1
DEMIXING
........................................................................
167
4.4.2.2
DOSING
SYSTEM
..............................................................
168
4.4.2.3
MIXING
OF
POLYMER
WITH
ADDITIVES
..............................
169
4.4.3
DRIVE-MEASUREMENT
TECHNIQUE
....................................................
170
4.4.4
FAULTS
IN
TESTS
WITH
SMALL
EXTRUDERS
FOR
SCALE-UP
PURPOSES
...
172
5
COMPOUNDING
WITH
CO-ROTATING
TWIN-SCREW
EXTRUDERS
...........
177
5.1
INTRODUCTION
...............................................................................................
177
KLEMENS
KOHLGRIIBER
5.1.1
ADVANTAGES
OF
THE
CO-ROTATING
TWIN-SCREW
EXTRUDER
................
178
5.1.2
DISADVANTAGES
OF
THE
CO-ROTATING
TWIN-SCREW
EXTRUDER
..........
180
5.1.3
RANGE
OF
SERVICES
AND
POWER
DENSITY
OF
CO-ROTATING
TWIN-SCREW
EXTRUDERS
.................................................................
181
5.1.4
PARAMETERS
IN
DEPENDENCE
ON
THE
DIAMETER
RATIO
..........
183
5.1.4.1
STRENGTH
AND
THROUGHPUT
AS
A
FUNCTION
OF
DA/D
T
....
183
5.1.4.2
PRESSURE
AND
POWER
CHARACTERISTIC
AS
A
FUNCTION
OFDJDT
.........................................................................
186
5.1.4.3
MAXIMUM
PRODUCT
VOLUME
..........................................
188
5.1.4.4
INNER
SURFACE
OF
THE
HOUSING
TO
MAXIMUM
PRODUCT
SPACE
...............................................................
189
5.1.4.5
OUTLOOK
.........................................................................
192
5.1.5
SPECIAL
TYPES
OF
CONSTRUCTION
OF
THE
CO-ROTATING
EXTRUDER
....
192
5.2
TASKS
AND
DESIGN
OF
THE
PROCESSING
ZONES
OF
A
COMPOUNDING
EXTRUDER
194
REINER
RUDOLF,
MICHAEL
BIERDEL
5.2.1
MELT
CONVEYING
ZONE
....................................................................
195
5.2.2
SOLIDS
CONVEYING
ZONE
.................................................................
201
5.2.3
PLASTIFICATION
ZONE
...................
204
5.2.4
DISTRIBUTIVE
AND
DISPERSIVE
MIXING
ZONE
....................................
209
5.2.5
DEVOLATILIZATION
ZONE
...................................................................
214
5.2.6
PRESSURE
BUILD-UP
ZONE
...............................................................
216
5.2.7 COMPLETE
SCREW
CONFIGURATION
...................................................
219
5.2.8
SPECIFIC
ENERGY
INPUT
...................................................................
222
5.2.9
RESIDENCE
TIME
CHARACTERISTICS
.................................................
225
5.3
PROCESS
AND
SCREW
CONCEPTS
FOR
MACHINES
WITH
HIGH
THROUGHPUTS
....
229
FRANK
LECHNER
5.3.1
DEVELOPMENT
TO
HIGH
TORQUES,
VOLUMES,
AND
ROTATIONS
............
229
5.3.2
PARAMETERS
AND
PROCESS
LIMITS
OF
CO-ROTATING
TWIN-SCREW
KNEADERS
...................................................................
230
5.3.3
PROCESS
LENGTH
AND
SCREW
DEVELOPMENT
....................................
233
5.3.4
MAXIMUM
POSSIBLE
SCREW
SPEED
.................................................
234
5.3.5
TORQUE-LIMITED
PROCESSES
...........................................................
235
5.3.6
VOLUME-LIMITED
PROCESSES
...........................................................
237
5.3.7
QUALITY-LIMITED
PROCESSES
...........................................................
241
5.3.8
PROCESS
CONCEPT
FOR
ECONOMICAL
COMPOUNDING
..........................
244
5.3.9
OUTLOOK
...........................................................................................
247
5.4
SCREW
DESIGNS
FOR
HIGHLY
FILLED
POLYMERS
(AND
DOSING
STRATEGIES)
....
247
SEBASTIAN
FRAAS
5.4.1
WHY
FILLER
COMPOUNDS?
...............................................................
247
5.4.2
TYPICAL
APPLICATIONS
.....................................................................
248
5.4.3
MATERIAL-SPECIFIC
INFLUENCING
FACTORS
..........................................
248
5.4.3.1
INFLUENCE
OF
FILLER
..........................................................
248
5.4.3.1.1
ORIGIN/MINING
.........................................
250
5.4.3.1.2
PARTICLE
SIZE
AND PARTICLE
SIZE
DISTRIBUTION
.............................................
250
5.4.3.1.3
COATING
......................................................
250
5.4.3.1.4
MOISTURE
CONTENT
......................................
251
5.4.3.2
POLYMER
AND
ADDITIVES
...................................................
252
5.4.4
PROCESS
TECHNOLOGY
.......................................................................
252
5.4.4.1
CONVEYING
TECHNOLOGY
..................................................
254
5.4.4.2
DOSING
EQUIPMENT
........................................................
255
5.4.4.3
DOWNSTREAM
EQUIPMENT
..............................................
256
5.4.4.4
BARREL
SETUP
OF
AN
EXTRUDER
FOR
HIGHLY
FILLED
COMPOUNDS
...................................................................
256
5.4.4.5
SCREW
DESIGN
................................................................
260
5.4.4.5.1
MELTING
ZONE
............................................
260
5.4.4.5.2
FILLER
ADDITION
AND
WETTING
....................
261
5.4.4.5.3
DISPERSION
ZONE
........................................
261
5.4.4.5.4
VACUUM
AND
DISCHARGE
ZONE
..................
262
5.4.4.6
ENTIRE
SYSTEM
................................................................
262
5.5
COMPOUNDING
OF
NATURAL
FIBER
REINFORCED
PLASTICS
................................
263
DIJAN
ILIEW,
STEPHEN
KROLL,
ANDREA
SIEBERT-RATHS
5.5.1
PRE-KNOWLEDGE
FOR
THE
PROCESSING
OF
NATURAL
FIBERS
..................
265
5.5.2
DESIGN
AND
PARAMETERIZATION
OF
THE
PROCESS
UNIT
OF
A
CO-ROTATING
TWIN-SCREW
EXTRUDER
................................................
271
5.6
FUNDAMENTALS
OF
THERMOPLASTIC
FOAM
EXTRUSION
BY
MEANS
OF
PARALLEL
TWIN-SCREW
EXTRUDERS
.................................................................
279
LUKAS
VOGEL
5.6.1
DEFINITION
AND
CHARACTERIZATION
OF
FOAMS
..................................
281
5.6.2
PROCESS
STEPS
FOR
FOAM
EXTRUSION
................................................
283
5.6.2.1
PROVISION
OF
THERMOPLASTIC
MELTS
................................
284
5.6.2.2
ADDITION
AND
ADMIXING
OF
THE
PROPELLANT
(BLOWING
AGENT)
............................................................
284
5.6.2.3
INJECTING
THE
BLOWING
AGENT
AND
CONDITIONING
OF
THE
MELT
.........................................................................
285
5.6.2
A
DISCHARGE
OF
THE
MELT
THROUGH
THE
DIE
..................
287
5.6.2.5
GROWTH
OF
CELLS
AND
STABILIZATION OF
THE
FOAM
STRUCTURE
...................................................
289
5.6.3
SYSTEM
COMPONENTS
FOR
FOAM
EXTRUSION
....................................
293
5.7
SCREW
CONFIGURATIONS
.................................................................................
298
MICHAEL
BIERDEL
5.8
MATERIALS,
COATINGS,
WEAR
TECHNOLOGY
.....................................................
313
OLIVER
KAYSER
5.8.1
REQUIREMENTS
TO
THE
COMPONENTS
FOR
COMPOUNDING
................
313
5.8.2
MATERIALS
AND
HEAT
TREATMENT
.....................................................
314
5.8.2.1
TEMPERING
STEELS
AND
NITRIDING
STEELS
......................
315
5.8.2.2
HOT-WORK
STEELS
...........................................................
315
5.8.2.3
ALLOYED
COLD-WORK
STEELS
............................................
316
5.8.2.4
HIGH-SPEED
STEELS
.......................................................
317
5.8.3
EXECUTION
OF
COMPONENTS
OF
TWIN-SCREW
EXTRUDERS
..................
317
5.8.4
PROCESS
OF
SURFACE
LAYER
HARDENING
...........................................
319
5.8.4.1
WEAR
PROTECTION
BY
NITRIDING
.............
320
5.8.4.2 AVOIDANCE
OF
ADHESIVE
WEAR
DUE
TO
NITRIDING
............
323
5.8.4.3 AVOIDANCE
OF
PITTING
CORROSION
BY
NITRIDING
..............
324
5.8.4.4
SPECIAL
PROCESS
FOR
MAINTAINING
CORROSION
PROTECTION
.......................................................................
324
5.8.5
WEAR
PROTECTION
BY
COATINGS
.......................................................
326
5.8.5.1
HARD
CHROMIUM
............................................................
326
5.8.5.2
CHEMICAL
NICKEL
...........................................................
328
5.8.5.3
THIN
LAYERS
OF
HARD
MATERIAL
......................................
329
5.8.5.3.1
PHYSICAL
VAPOR
DEPOSITION
......................
329
5.8.5.3.2
CHEMICAL
VAPOR
DEPOSITION
....................
333
5.8.6
RECOMMENDATIONS
FOR
APPLICATION
.............................................
336
5.8.7
SUMMARY
AND
OUTLOOK
.................................................................
337
6
COMPOUNDING
AND
POLYMER
PROCESSING
WITH
DIFFERENT
EXTRUDER
TYPES
.......................................................................
341
6.1
EXTRUDER
TYPES
-
INTRODUCTION
.................................................................
341
KLEMENS
KOHLGRIIBER
6.1.1
COMPOUNDING
AND
PROCESSING
WITH
DIFFERENT
EXTRUDER
TYPES
341
6.1.2
SINGLE-SCREW
EXTRUDERS
...............................................................
344
6.1.3
GEAR
PUMPS
...................................................................................
345
6.1.4
CO-ROTATING
TWIN-SCREW
EXTRUDERS
.............................................
346
6.1.5
COUNTER-ROTATING
TWIN-SCREW
EXTRUDERS
....................................
347
6.1.6
MULTI-SCREW
EXTRUDERS:
RINGEXTRUDERS
AND
PLANETARY
ROLLER
EXTRUDERS
.........................................................
348
6.1.7
NON-SCREW
EXTRUDERS
.................................................
349
6.1.8
HIGH-VISCOSITY
REACTORS
...............................................................
350
6.2
SINGLE-SCREW
EXTRUDER
...............................................................................
351
GREGOR
KARRENBERG
6.2.1
APPLICATIONS
IN
COMPOUNDING
.....................................................
351
6.2.2
DESIGN
AND
FUNCTION
.....................................................................
353
6.2.3
PLASTICIZING
EXTRUDER
...................................................................
356
6.2.4
MELT
EXTRUDER
...............................................................................
361
6.2.5
DEGASSING
EXTRUDER
.....................................................................
362
6.2.6
MIXING
ELEMENTS
FOR
SINGLE-SCREW
EXTRUDERS
............................
364
6.2.7
SCALE-UP
METHODS
.........................................................................
367
6.3
THE
RINGEXTRUDER
.......................................................................................
369
MICHAEL
ERDMANN
6.3.1
MECHANICAL
SETUP
..........................................................................
370
6.3.2
PRINCIPLE
OF
MOVEMENT
AND
DISTRIBUTIVE
MIXING
........................
373
6.3.3
DISPERSIVE
MIXING
..........................................................................
374
6.3.4
DEGASSING
EFFICIENCY
.....................................................................
375
6.3.5
HEAT
TRANSFER
-
SURFACE/VOLUME
RATIO
........................................
376
6.3.6
WEAR
PROTECTION
.............................................................................
377
6.3.7
EXTRUDER
SERIES
AND
SCALE-UP
......................................................
378
6.3.8
FIELDS
OF
APPLICATION
......................................................................
379
6.3.8.1
PET
RECYCLING
................................................................
380
6.3.8.2
CONTINUOUS
PRODUCTION
OF
RUBBER
COMPOUNDS
..........
381
6.4
COUNTER-ROTATING
INTERMESHING
TWIN
SCREWS
..........................................
387
ERNST
KRUGER
6.4.1
UNDERSTANDING
OF
GELATION
OF
PVC
AS
A
REQUIREMENT
FOR
UNDERSTANDING
OF
TWIN
SCREWS
....................................................
388
6.4.2
STRUCTURE
OF
A
PVC
GRAIN
..............................................................
389
6.4.3
SCHEME
OF
PVC
PROCESSING
............................................................
390
6.4.4
MODEL
OF
PVC
COMPOUNDING
AND
PROCESSING
..............................
390
6.4.5
LEVEL
OF
GELATION
AND
MECHANICAL
PROPERTIES
..............................
391
6.4.6
FORMULATION
COMPONENTS
..............................................................
392
6.4.7
HOMOGENEITY
OF
THE
GELATION
LEVEL
..............................................
392
6.4.8
HOMOGENEITY
IN
PVC
PROCESSING
..................................................
393
6.4.9
INFLUENCE
OF
TEMPERATURE
ON
GELATION
HOMOGENEITY
..................
394
6.4.10
TEMPERATURE
INSIDE
THE
8TO0
ADAPTER
..........................................
394
6.4.11
BASICS
OF
SCREW
DESIGN
...................................................................
395
6.4.11.1
ZONES
OF
A
COUNTER-ROTATING
TWIN
SCREW
....................
396
6.4.11.2
SPECIAL
FEATURES
OF
THE
SCREW
DESIGN
OF
COUNTER-ROTATING
TWIN
SCREWS
....................................
398
6.4.12
DESIGN
AND
WEAR
...........................................................................
399
6.5
PLANETARY
ROLLER
EXTRUDER
.........................................................................
404
ELARALD
RUST,
THOMAS
BIRR,
HOLGER
LANGE
6.5.1
INTRODUCTION
...................................................................................
404
6.5.2
MECHANICAL
PRINCIPLE
...................................................................
405
6.5.3
CONSTRUCTION
.................................................................................
406
6.5.4
CHARACTERISTICS
.............................................................................
407
6.5.5
CONSTRUCTION
SIZES
AND
DESIGNATIONS
..........................................
408
6.5.6
CONVEYING
AND
WORKING
PRINCIPLE
..............................................
410
6.5.6.1
PARTIALLY
AND
FULLY
FILLED
AREAS
..................................
411
6.5.7
PLANETARY
SPINDLE
CONFIGURATION
..................................................
412
6.5.7.1
TYPES
OF
PLANETARY
SPINDLES
........................................
413
6.5.7.2
PLANETARY
SPINDLE
LENGTHS
...........................................
416
6.5.7.3
DISTRIBUTION
OF
PLANETARY
SPINDLES
...............................
418
6.5.8
INTERMEDIATE
RINGS
.......................................................................
419
6.5.9
THE
MODULAR
SYSTEM
.....................................................................
422
6.5.10
FEEDING
OF
SOLIDS
...........................................................................
423
6.5.11
FEEDING
OF
LIQUIDS
.......................................................................
427
6.5.12
DEGASSING
.....................................................................................
429
6.5.13
SENSOR
SYSTEM
.............................................................................
438
6.5.14
PERIPHERAL
DEVICES
.......................................................................
440
6.6
OSCILLATING
SCREW
KNEADER
OR
CONTINUOUS
KNEADER
................................
442
HANS-ULRICH
SIEGENTHALER
6.6.1
INTRODUCTION
...................................................................................
442
6.6.2
HISTORICAL
BACKGROUND
.................................................................
443
6.6.3
WORKING
PRINCIPLE
.....................
444
6.6.4
SHEAR
RATE
.....................................................................................
446
6.6.5
RESIDENCE
TIME
AND
RESIDENCE
TIME
DISTRIBUTION
....................
448
6.6.6
TECHNICAL
DESIGN
...........................................................................
450
6.6.6.1
MODULARITY
.....................................................................
450
6.6.6.2
LINERS
...............
452
6.6.6.3
SCREW
ELEMENTS
...........................................................
454
6.6.6A
KNEADING
BOLTS
AND
TEETH
.............................................
456
6.6.6.5
TEMPERATURE
CONTROL
...................................................
458
6.6.6.6
PRESSURE
BUILD-UP
SYSTEMS
...........................................
461
6.6.7
APPLICATION
FIELDS
.........................................................................
462
6.6.7.1
CABLE
COMPOUNDS
.........................................................
463
6.6.7.2
ENGINEERING AND
HIGH-PERFORMANCE
PLASTICS
...............
464
6.6.7.3
PVC
APPLICATIONS
(GRANULATING AND
CALENDERING)
...
465
6.6.7.4
THERMOSET
APPLICATIONS
.............................................
466
6.6.7.5
POWDER
COATINGS
AND
TONERS
.........................................
466
6.6.7.6
ANODE
MASSES
FOR
ALUMINUM
PRODUCTION
...................
467
6.6.7.7
SPECIALTIES
.......................................................................
467
6.6.7.3
FOOD
APPLICATIONS
.........................................................
468
6.7
FARREL
POMINI
CONTINUOUS
MIXERS
.............................................................
470
PETER
GOHL,
ROMAN
KEBALO,
JOE
PEREIRA,
STUART
SARDINSKAS
6.7.1
INTRODUCTION
...................................................................................
470
6.7.2
GENERAL
MECHANICAL
FEATURES
......................................................
472
6.7.2.1
MECHANICAL
FEATURES:
MIXER
........................................
472
6.7.2.2
MECHANICAL
FEATURES:
EXTRUDER
....................................
473
6.7.3
FCM
CONFIGURATION
.......................................................................
473
6.7.3.1
FEED
SECTION
.................................................................
473
6.7.3.2
MIXING
SECTION
..............................................................
473
6.7.
3.3
APEX
ZONE
.......................................................................
474
6.7.3.4
ROTOR
ORIENTATION
..........................................................
475
6.7.4
PRINCIPLES
OF
OPERATION
................................................................
478
6.7.4.1
HEATING
AND
COOLING
.....................................................
480
6.7.4.2
MIXER
BODY
SEGMENTS
AND
MIXING
DAMS
..................
481
6.7.5
PROCESS
FLEXIBILITY
.........................................................................
482
6.7.6
APPLICATIONS
....................................................................................
484
6.7.7
ENERGY
SAVING
...............................................................................
485
6.7.8
CONCLUSION
.....................................................................................
487
6.8
EXTRUDER
TYPES
-
COMPARISON
.................................................................
488
KLEMENS
KOHLGRIIBER,
MICHAEL
BIERDEL
6.8.1
QUESTIONS
TO
BE
ASKED
PRIOR
TO
A
COMPARISON
............................
488
6.8.2 COSTS,
OPERATING
FIGURES,
SPECIFIC
ENERGY
..................................
490
6.8.3
CHARACTERISTIC
PROCESS
PROPERTIES
OF
DIFFERENT
EXTRUDER
TYPES
496
6.8.4
DESCRIPTIVE
EVALUATION
OF
EXTRUDERS
WITH
CURRENT
THROUGHPUTS
AND
SIZES
.......................................................................................
500
6.9
MRS
(MULTI-ROTATIONS
SYSTEM)
.................................................................
510
AXEL
HANNEMANN
6.9.1
MODE
OF
OPERATION
.......................................................................
510
6.9.1.1
FEEDING
AND
PLASTIFICATION
IN
THE
MRS
.........................
510
6.9.1.2
THE
DEGASSING
DRUM
-
THE
HEART
OF
THE
MRS
TECHNOLOGY
............................................................
511
6.9.1.3
CONVEYING
AND
PUMPING
...............................................
514
6.9.2
CONTINUOUS
MEASURE
AND
CONTROL
OF
PROCESS
PARAMETERS
..........
514
6.9.2.1
IMPORTANCE
OF
ACQUISITION
AND
CONTROL
OF
THE
PROCESS
PARAMETERS
MELT
PRESSURE,
TEMPERATURE,
AND
VISCOSITY
...............................................................
514
6.9.2.2
CONTROL
BY
MEANS
OF
ONLINE
VISCOMETER
VIS
..............
514
6.9.3
ESSENTIAL
PROCESS-RELATED
INFLUENCING
FACTORS
DURING
PET
PROCESSING
.............................................................................
515
6.9.3.1
DRYING
AND
EXTRUSION
..................................................
515
6.9.4
PROCESSING
OF
OTHER
POLYMERS
......................................................
519
6.9.4.1
RECYCLING
OF
POLYOLEFINS
................................................
519
6.9.4.2
MONOMER
REMOVAL
........................................................
521
6.9.4.3
DECONTAMINATION
..........................................................
524
6.9.5
ENERGY
SAVINGS
WITH
THE
MRS
SYSTEM
........................................
525
6.9.6
RESULTS
...........................................................................................
526
7
PROCESSING
OF
POLYMER
MELTS
WITH
OTHER
DEVICES
AND
MACHINES
................................................................................
529
7.1
HIGH-VISCOSITY
REACTORS
.............................................................................
529
OLIVER
SEEK
7.1.1
INTRODUCTION
...................................................................................
529
7.1.2
SINGLE-SHAFT
HIGH-VISCOSITY
REACTORS
.........................................
532
7.1.3
TWIN-SHAFT
HIGH-VISCOSITY
REACTORS
...........................................
534
7.1.3.1
REACOM
.........................................................................
534
7.1.3.2
REASIL
.............................................................................
535
7.1.4
PRODUCT
TRANSPORT
.........................................................................
536
7.1.5
ENERGY
INPUT
.................................................................................
537
7.1.6 AXIAL
AND
RADIAL
MIXING
BEHAVIOR
.............................................
538
7.1.7
DEVOLATILIZATION
.............................................................................
541
7.1.8
APPARATUS
DESIGN
AND
SCALE-UP
.................................................
544
7.1.9
SUMMARY
.......................................................................................
546
7.2
COMPOUNDING
OF
POLYMERS
BY
MEANS
OF
CALENDER
AND
FLAT
FILM
LINES
548
HARALD
RUST,
STEFAN
SEIBEL
7.2.1
HISTORY
...........................................................................................
548
7.2.2
CONTINUOUS
FEEDING
.....................................................................
550
7.2.3
THE
PLANETARY
ROLLER
EXTRUDER
FOR
CALENDER
FEEDING
................
550
7.2.4
COMPARISON
OF
DIFFERENT
COMPOUNDING
SYSTEMS
........................
551
7.2.5
MODERN
CALENDER
LINES
...............................................................
552
7.2.6
TYPES
OF
PELLETIZING
.......................................................................
554
7.2.7
ROLL
MILL
AND
STRAINER
...................................................................
556
7.2.8
ROLL
MILL
.........................................................................................
556
7.2.9
STRAINER
.........................................................................................
556
7.2.10
EDGE
TRIMS
.....................................................................................
558
7.2.11
DIFFERENT
CALENDER
TYPES
.............................................................
559
7.2.12
SPECIAL
DESIGNS
.............................................................................
561
7.2.13
DIFFERENCES
BETWEEN
CALENDERS
AND
CALANDRETTES
......................
561
7.2.14
THE
TASK
OF
THE
CALENDER
AND
DIFFERENT
CALENDER
ROLLS
.............
562
7.2.15
THE
SETUP
AND
MODE
OF
OPERATION
OF
A
CALENDER
........................
564
7.2.16
POSSIBILITIES
OF
CORRECTION
...........................................................
565
7.2.17
TEMPERATURE
DISTRIBUTIONS
...........................................................
566
7.2.18
COMPARISON
OF
THE
TEMPERATURE
DISTRIBUTION
IN
THE
EDGE
AREAS
BETWEEN
A
CONVENTIONAL,
PERIPHERALLY
BORED
ROLL
AND
A
COILED
ROLL
...........................................................................
566
7.2.19
STATIC
AND
THERMAL
COMPARISON
OF
CALENDER
ROLLS
IN
USE
TODAY
567
7.2.20
SPEEDS
AND
SIZES
...........................................................................
567
7.2.21
THE
MINI
IMPRESSION
ROLLER
.........................................................
569
7.2.22
THICKNESS
MEASURING
AND
INSPECTION
UNIT
FOR
CONTAMINATION
.
570
7.2.23
WINDER
...........................................................................................
571
7.2.24
SHEET
AND
FILM
PRODUCTION
............................................................
572
7.2.24.1
GEAR
PUMPS
..................................................................
572
7.2.24.2
FLAT
FILM
DIES
................................................................
573
7.2.24.2.1
DIE
CONSTRUCTION
ALWAYS
IS
A
COMPROMISE
..............................................
573
7.2.24.2.2
APPLICATION-SPECIFIC
DIE
EQUIPMENT
....
574
7.2.24.2.3
MULTI-LAYER
EXTRUSION
..............................
574
7.2.25
CHILL
ROLL
LINE
................................................................................
576
7.2.26
FLAT
FILM LINE
...............................................................................
577
7.2.27
POLISHING
ROLLS
................................................................................
577
7.2.28
FOAM
SHEETS
OF
20
MM-200
MM
..................................................
579
7.2.29
VACUUM
NAP
FILM
LINE
ACCORDING
TO
THE
FILM
CASTING
PRINCIPLE
FOR
CONSTRUCTION
NAP
FILM
............................................
580
7.2.30
TPU
FILM
LINE
FOR
DIRECT
EMBOSSING
BETWEEN
SILICONIZED
FABRIC
581
7.2.31
FILM
STRETCHING
LINES
....................................................................
581
7.2.32
INTRODUCTION
TO
THE
BIAX
PROCESS
USING
THE
EXAMPLE
OF
BOPP
..
582
7.2.32.1
RAW
MATERIAL
SUPPLY
AND
EXTRUSION
..........................
582
7.2.32.2
TDO
(TRANSVERSAL
DIRECTION
ORIENTER)
........................
583
7.3
MIXING
AND
DISPERSION
.............................................................................
585
7.3.1
FUNDAMENTALS:
HOMOGENEOUS
AND
DISPERSIVE
MIXING
..............
585
JORG
KIRCHHOFF,
MICHAEL
BIERDEL
7.3.1.1
OVERVIEW,
PRINCIPLES,
AND
EXPERIMENTS
......................
585
7.3.1.1.1
HOMOGENEOUS
MIXING
-
MIXING
IN
LAMINAR
FLOW
............................................
585
7.3.1.1.2
DISPERSIVE
MIXING
....................................
591
7.3.1.1.3
DETERMINING
THE
MIXING
QUALITY
............
598
7.3.1.2
THREE-DIMENSIONAL
CALCULATIONS
OF
MIXING
AND
RESIDENCE
TIME
BEHAVIOR
............................................
602
7.3.1.3
SUMMARY
.......................................................................
608
7.3.2
STATIC
MIXERS
.................................................................................
609
KLEMENS
KOHLGRIIBER
7.3.2.1
INTRODUCTION,
ADVANTAGES,
AND
DISADVANTAGES
...........
609
7.3.2.2
CONSTRUCTION
TYPES
.......................................................
611
7.3.2.3
PROCESS
TECHNOLOGY
......................................................
616
7.3.2.3.1
PRESSURE
LOSS
AND
MIXER
EVALUATION
....
616
7.3.2.3.2
REDUCTION
IN
LAYER
THICKNESS
DEPENDING
ON
THE
MIXING
LENGTH
-
DISTRIBUTIVE
MIXING
..................................
617
7.3.2.3.3
RESIDENCE
TIME
DISTRIBUTION
..................
618
7.3.2.3.4
POWER
INPUT
AND
TEMPERATURE
................
618
7.3.2.3.5
GAS
DISPERSION
.........................................
620
7.3.2.3.6
MIXING-IN
OF
ADDITIVES
...............................
621
7.3.2.3.7
HEAT
TRANSFER
.............................................
621
7.3.2.3.8
SCALE-UP
OF
THE
MIXING
FUNCTION
.............
622
7.3.2.4
STATIC
MIXERS
WITH
INTERNAL
TEMPERATURE
CONTROL
...
624
7.3.2.4.1
SMR
HEAT
EXCHANGER
................................
625
7.3.2.4.2
COMPACT
HEAT
EXCHANGER
WITH
TEMPERATURE-CONTROLLED
X
INSTALLATIONS
625
PART
D
FURTHER
IMPORTANT
COMPONENTS
OF
A
PROCESSING
FACILITY
627
8
BULK
MATERIAL
TECHNOLOGY
IN
POLYMER
PROCESSING
....................
629
8.1
SILO
DESIGN
FOR
FLOW
AND
STABILITY
.............................................................
629
HARALD
WILMS
8.1.1
SILOS
DISCHARGE
PROBLEMS
.............................................................
629
8.1.1.1
ARCHING
..........................................................................
629
8.1.1.2
RATHOLING
........................................................................
630
8.1.1.3
ERRATIC
FLOW
..................................................................
631
8.1.1.4
FLUSHING
........................................................................
631
8.1.1.5
SEGREGATION
....................................................................
631
8.1.1.6
LEVEL
CONTROL
................................................................
633
8.1.1.7
RESIDENCE
DISTRIBUTION
.................................................
634
8.1.2
FLOW
PROFILES
IN
SILOS
...................................................................
635
8.1.3
SHEAR
TESTS
TO
DETERMINE
THE
FLOW
PROPERTIES
............................
637
8.1.4
SILO
DESIGN
FOR
FLOW
.....................................................................
641
8.1.4.1
HOPPER
WALL
INCLINATION
FOR
MASS
FLOW
......................
642
8.1.4.2
OUTLET
DIAMETER
TO
AVOID
ARCHING
IN
MASS
FLOW
.........
645
8.1.4.3
OUTLET
DIAMETER
TO
AVOID
RATHOLING
IN
FUNNEL
FLOW
..
649
8.1.4.4
INFLUENCE
OF
TIME
CONSOLIDATION
...................................
653
8.1.4.5
APPLICATION
OF
DISCHARGE
DEVICES
AND
DISCHARGE
AIDS
.............................................................
654
8.1.5
STRUCTURAL
ASPECTS
OF
SILO
DESIGN
...............................................
656
8.1.5.1
PRESSURES
IN
SILOS
..........................................................
656
8.1.5.2
PRESSURE
PEAKS
IN
SILOS
................................................
657
8.1.5.3
ASYMMETRIC
FLOW
CHANNELS
.........................................
658
8.2
BLENDING
SILOS
FOR
PLASTIC
COMPOUNDING
AND
PROCESSING
........................
662
HARALD
WILMS
8.2.1
INTRODUCTION
...................................................................................
662
8.2.2
REQUIREMENTS
FOR
BLENDING
SILOS
.................................................
664
8.2.3
SURVEY
ON
BLENDING
SILO
DESIGNS
...............................................
666
8.2.3.1
BLENDING
SILOS
WITH
MECHANICAL
ENERGY
INPUT
...........
666
8.2.3.2
BLENDING
SILOS
WITH
PNEUMATIC
ENERGY
INPUT
............
667
8.2.3.3
GRAVITY
FLOW
BLENDING
SILOS
WITH
INTERNAL
BLEND
HOPPERS
...............................
669
8.2.3
A
GRAVITY
FLOW
BLENDING
SILOS
WITH
BLENDING
PIPES
...
671
B.2.3.5
MULTI-CHAMBER
BLENDING
SILOS
....................................
674
8.2.4
SELECTION
CRITERIA
.........................................................................
675
8.2.5
SUMMARY
.......................................................................................
677
8.3
FEEDING
TECHNOLOGY
...................................................................................
678
BERNHARD
HIIPPMEIER
8.3.1
BASICS
OF
FEEDING
TECHNOLOGY
......................................................
679
8.3.2
DIFFERENT
FEEDING
TECHNOLOGIES
FOR
SOLIDS
..................................
681
8.3.3
LOSS-IN-WEIGHT
LIQUID
FEEDERS
....................................................
686
8.3.4
LOSS-IN-WEIGHT
FEEDER
.................................................................
687
8.3.5
REQUIREMENTS
FOR
THE
WEIGH-FEEDERS
..........................................
688
8.3.6
PLANT
IMPLEMENTATION
...................................................................
689
8.3.7
REFILL
...............................................................................................
691
8.3.8
VENTING
...........................................................................................
693
8.3.9
ATEX
.............................................................................................
694
8.3.10
ACCURACY
&
CONSISTENCY
(NAMUR)
................................................
695
8.3.11
CLEANING
AND
PRODUCT
CHANGE
....................................................
696
8.3.12
CONTROL
AND
INTERFACES
.................................................................
696
8.3.13
FUTURE
OUTLOOK
.............................................................................
696
8.3.14
SUMMARY
.......................................................................................
697
8.4
HIGH-INTENSIVE
MIXING
...............................................................................
697
HARALD
WILMS,
HENNING
KREIS
8.4.1
INTRODUCTION
...................................................................................
697
8.4.2
INTRODUCTION
TO
MIXING
OF
SOLIDS
..................................................
698
8.4.2.1
MIXING
TASK
...................................................................
698
8.4.2.2
CLASSIFICATION
OF
MIXERS
................................................
699
8.4.2.3
SEGREGATION
...................................................................
699
8.4.2.4
DESCRIPTION
OF
THE
STATE
OF
MIXING
BY
STATISTICAL
MEANS
.........................................................
700
8.4.3
APPLICATIONS
FOR
HIGH-SPEED
MIXERS
............................................
702
8.4.3.1
PVC
PROCESSING
...........................................................
703
8.4.3.2
PRODUCTION
OF
WOOD-PLASTIC
COMPOUNDS
(WPC)
........
704
8.4.3.3
PRODUCTION
OF
COMPOUNDS
FOR
POWDER
INJECTION
MOLDING
(PIM)
.............................................................
704
8.4.3.4
PRODUCTION
OF
COMPOUNDS
FOR
BONDING
APPLICATIONS
704
8.4.4
MIXERS
OPERATING
IN
BATCH
MODE
..................................................
705
8.4.4.1
FLUID
MIXERS
.................................................................
705
8.4.4.2
HIGH-SPEED
MIXERS
.......................................................
706
8.4.4.3
HEATING-COOLING
MIXER
COMBINATION
........................
708
8.4.4.4
CONTAINER
MIXER
.........................................................
709
8.4.5
MIXERS
FOR
CONTINUOUS
OPERATION
...............................................
710
8.4.6
SUMMARY
AND
OUTLOOK
.................................................................
712
8.5
PNEUMATIC
CONVEYING
IN
THE
POLYMER
INDUSTRY
.....................................
714
HARALD
WILMS,
GUIDO
WINKHARDT
8.5.1
INTRODUCTION
.................................................................................
714
8.5.2 CONVEYING
MODES
AND
FLOW
CHARACTERISTIC
................................
715
8.5.3
DESIGN
OF
PNEUMATIC
CONVEYING
SYSTEMS
....................................
717
8.5.4
DESIGN
AND
OPERATION
OF
PNEUMATIC
CONVEYING
SYSTEMS
..........
720
8.5.4.1
CONCEPT
AND
OPERATION
OF
A
DILUTE-PHASE
CONVEYING
SYSTEM
.......................................................
721
5.5.4.2
CONCEPT
AND
OPERATION
OF
DENSE-PHASE
CONVEYING
SYSTEMS
.....................................................
721
8.5.5
FEEDING
OF
SOLIDS
INTO
THE
CONVEYING
LINE
..................................
726
8.5.6
SUMMARY
.......................................................................................
727
9
GEAR
PUMPS
FOR
COMPOUNDING
...................................................
731
SVEN
WIECZOREK
9.1
INTRODUCTION
-
GEAR
PUMPS
.......................................................................
731
9.2
MODE
OF
OPERATION
OF
THE
GEAR
PUMP
.......................................................
732
9.3
GEAR
PUMP
FOR
COMPOUNDING
IN
THE
MAIN
FLOW
......................................
733
9.3.1
DESIGN
OF
THE
PUMP
.....................................................................
734
9.3.1.1
HOUSING
AND
COVERS
.....................................................
735
9.3.1.2
GEARWHEELS
.................................................................
736
9.3.1.3
FRICTION
BEARING
...........................................................
738
9.3.1.4
AXIAL
SHAFT
SEAL
...........................................................
740
9.3.1.5
HEATING
.........................................................................
741
9.3.2
INFLUENCE
OF
THE
PUMPED
MEDIUM
...............................................
741
9.3.2.1
VISCOSITY
.......................................................................
741
9.3.2.2
SOLIDS
.............................................................................
743
9.3.3
CONTROL
SYSTEM
..........................................................
743
9.4
GEAR
PUMP
FOR
ADDITIVES
...........................................................................
743
9.4.1
DESIGN
OF
THE
PUMP
.....................................................................
743
9.4.1.1
HOUSING
AND
COVERS
.....................................................
744
9.4.1.2
GEARWHEELS
.................................................................
744
9.4.1.3
FRICTION
BEARING
...........................................................
745
9.4.1.4
AXIAL
SHAFT
SEAL
...........................................................
745
9.4.1.5
HEATING
.........................................................................
745
9.4.2
INFLUENCE
OF
THE
PUMPED
MEDIUM
...............................................
745
9.4.2.1
VISCOSITY
.......................................................................
745
10
FILTERS
FOR
(HIGHLY)
VISCOUS
POLYMER
MELTS
.................................
747
THOMAS
GRIMM-BOSBACH
10.1
BASIC
PRINCIPLES
OF
POLYMER
FILTRATION
......................................................
747
10.1.1
POSSIBLE
CONTAMINATION
OF
POLYMER
MELTS
..................................
748
10.1.2
USABLE
FILTER
MEDIA
......................................................................
749
10.1.3
DEFINITION
OF
POLYMER
MELT
FILTRATION
..........................................
753
10.2
FILTRATION
SYSTEMS
......................................................................................
754
10.2.1
LARGE-AREA
FILTERS
..........................................................................
754
10.2.1.1
FILTER
CANDLES
................................................................
755
10.2.1.2
FILTER
DISCS
....................................................................
756
10.2.2
SCREEN
CHANGERS
............................................................................
760
10.2.2.1
PISTON
SCREEN
CHANGERS
................................................
760
10.2.2.2
ROTARY
SCREEN
CHANGERS
..............................................
763
10.2.3
MODERN
FILTRATION
SYSTEMS
-
ECONOMIC
CONSIDERATIONS
............
765
10.3
DESIGN
PROCEDURE
FOR
MELT
FILTERS
..............................................................
767
10.4
THE
RIGHT
FILTRATION
..................................................................................
777
11
PELLETIZING
AND
DRYING
...................................................................
781
HARALD
ZANG,
HORST
MULLER
11.1
OVERVIEW
OF
PELLETIZING
PROCESSES
............................................................
781
11.2
PROCESS
ENGINEERING
ASPECTS
OF
PELLETIZING
..............................................
783
11.3
PROCESS
ENGINEERING
ASPECTS
OF
DRYING
....................................................
786
11.4
PELLETIZING
AND
DRYING
IN
THE
POLYMER
PRODUCTION
..................................
787
11.4.1
TYPICAL
APPLICATION
REQUIREMENTS
..............................................
787
11.4.2
UNDERWATER
PELLETIZING
TECHNOLOGY
FOR
POLYOLEFINS
....................
788
11.4.3
AIR-COOLED
PELLETIZING
FOR
PVC
......................................................
792
11.4.4
UNDERWATER
STRAND
PELLETIZING
....................................................
793
11.4.5
PELLET
DRYING
AND
PROCESS
WATER
TREATMENT
IN
THE
POLYMER
PRODUCTION
......................................................................
794
11.5
PELLETIZING
AND
DRYING
IN
COMPOUNDING
PROCESSES
(FILLING,
REINFORCING,
ADDITIVATION,
BLENDING)
........................................................
796
11.5.1
TYPICAL
APPLICATION
REQUIREMENTS
..............................................
797
11.5.2
UNDERWATER
PELLETIZING
AND
DRYING
............................................
798
11.5.3
STRAND
DRY
CUT
(CONVENTIONAL
STRAND
PELLETIZING)
......................
800
11.5.4
AUTOMATIC
STRAND
DRY
CUT
............................................................
802
11.5.5
SPECIAL
PROCESSES
FOR
SPECIAL
APPLICATIONS
................................
803
11.6
OTHER
PELLETIZING
AND
DRYING
PROCESSES
....................................................
804
11.6.1
DICERS
.............................................................................................
804
11.6.2
WATER
RING
PELLETIZERS
..................................................................
805
11.6.3
ALTERNATIVE
PELLETIZING
PROCESSES
................................................
806
12
MEASUREMENT
TECHNOLOGY
...........................................................
809
CHRISTOPH
KUGLER,
JOHANNES
RUDLOFF,
CHRISTINA
HOFFMANN,
THOMAS
HOCHREIN
12.1
METROLOGICAL
BASICS
...................................................................................
809
12.2
PRESSURE
AND
TEMPERATURE
MEASUREMENT
TECHNOLOGY
............................
810
12.2.1
TEMPERATURE
.................................................................................
811
12.2.2
PRESSURE
.........................................................................................
813
12.3
RHEOLOGICAL
METROLOGY
...............................................................................
815
12.3.1
LABORATORY
RHEOMETERS
...............................................................
815
12.3.2
PROCESS
RHEOMETERS
.....................................................................
817
12.4
OPTICAL
AND
SPECTROSCOPIC
METHODS
........................................................
818
12.4.1
COLOR
MEASUREMENT
.....................................................................
818
12.4.2
INFRARED
SPECTROSCOPY
.................................................................
819
12.4.3
MICROSCOPY
AND
IMAGE
ANALYSIS
.................................................
820
12.4.4 OPTICAL
SORTING
SYSTEM
.................................................................
820
12.5
APPLICATION-RELATED
TESTS
.........................................................................
823
12.6
FILTER
PRESSURE
TEST
...................................................................................
824
12.7
SPECIAL
SYSTEMS
.........................................................................................
827
12.7.1
ULTRASONIC
MEASUREMENT
TECHNOLOGY
..........................................
828
12.7.2
MODEL-PREDICTIVE
CONTROL
.............................................................
828
INDEX
........................................................................................................
831
|
adam_txt |
CONTENTS
THE
AUTHORS
.
V
IN
MEMORIAM
.
IX
PREFACE
.
XI
PART
A
INTRODUCTION
TO
THE
PROCESSING
OF
POLYMERS
.
1
1
INTRODUCTION
.
3
KLEMENS
KOHLGRIIBER,
MICHAEL
BIERDEL
1.1
PLASTICS
AND
THEIR
IMPORTANCE
.
3
1.2
PROCESSING AND
COMPOUNDING
.
4
1.3
RECYCLING
OF
PLASTICS
.
5
1.4
GUIDE
TO
THE
INDIVIDUAL
CHAPTERS
OF
THIS
BOOK
.
7
2
POLYMER
PROCESSING
-
PROCESS
TECHNOLOGY
OF
POLYMER
PRODUCTION
.
9
KLEMENS
KOHLGRIIBER
2.1
INTRODUCTION
.
9
2.2
POLYMER
PROCESSING
DURING
THE
POLYMER
SYNTHESIS
IN
THE
PRIMARY
PRODUCTION
.
14
2.3
POLYMER
PROCESSING
AFTER
THE
POLYMER
PRODUCTION
-
COMPOUNDING
.
17
2.3.1
MAIN
TEMPERATURE
WINDOW
WHEN
COMPOUNDING
FOR
FINISH
MIXTURE
.
18
2.3.2
MIXING
IN
THE
EXTRUDER
.
19
2.3.3
TEMPERATURE
AND
TIME
LIMITS
FOR
COMPOUNDING
.
22
2.3.4
CHALLENGES
WHEN
COMPOUNDING
.
25
2.3.5
ENERGY
REQUIREMENT
WHEN
COMPOUNDING
.
28
2.3.6 RANGE
OF
PERFORMANCE
OF
EXTRUDER
.
32
2.3.7
THROUGHPUT
AND
PERFORMANCE
DENSITY
.
35
2.3.8
PERFORMANCE
DENSITY
IN
THE
MELT
AREA
.
39
2.3.9
ENERGY
BALANCE
AND
PRODUCT
DISCHARGE
TEMPERATURE
.
40
2.3.10
STATIC
MIXERS
.
46
2.3.11
MIXING
PERFORMANCE,
MIXING
QUALITY,
CROSS
MIXING,
LONGITUDINAL
MIXING
.
49
2.3.11.1
MIXING
PERFORMANCE
.
49
2.3.11.2
MIXING
PERFORMANCE
AND
MIXING
QUALITY
.
51
2.3.11.3
CROSS
AND
LONGITUDINAL
MIXING
.
53
2.3.11.4
RESIDENCE
TIME
DISTRIBUTION
.
54
2.3.11.5
MEAN
RESIDENCE
TIME
.
58
PART
B
PROCESSING
IN
POLYMER
PRODUCTION
.
61
3
DEVOLATILIZING
DEVICES
.
63
3.1
FUNDAMENTALS
OF
DEVOLATILIZATION
.
63
HEINO
THIELE
3.1.1
PHASE
EQUILIBRIUM
.
65
3.1.2
MACROSCOPIC
MASS
AND
ENERGY
BALANCE
.
68
3.1.3
QUANTITIES
INFLUENCING
THE
CHANGE
IN
CONCENTRATION
.
69
3.1.4
GENERAL
CONCLUSIONS
.
79
3.2
POLYMER
PRODUCTION
AND
DEGASSING
TASKS
.
81
KLEMENS
KOHLGRIIBER
3.2.1
GENERAL
CHALLENGES
AT
THE
DEGASSING
OF
VOLATILES
FROM
POLYMERS
.
82
3.2.2
SPECIAL
FEATURES
AT
THE
DEGASSING
OF
POLYMERS
WITH
HIGH
CONTENT
OF
VOLATILES
AND
LIMITATION
OF
FINISH
DEGASSING
.
83
3.3
OVERVIEW
OF
DEVICES
AND
MACHINES
FOR
COMPOUNDING
WITH
POLYMER
DEGASSING
.
84
KLEMENS
KOHLGRIIBER
3.3.1
INTRODUCTION
.
84
3.3.2
DEVICES
WITH
ROTATING
COMPONENTS
AND
MACHINES
.
86
3.4
APPARATUS-BASED
POLYMER EVAPORATION
.
90
KLEMENS
KOHLGRIIBER
3.4.1
TUBE
EVAPORATOR
.
91
3.4.2
PROCESS
AND
DEVICES
FOR
FINISH
DEGASSING
FOR
VERY
LOW
RESIDUAL
CONTENTS
IN
THE
POLYMER
.
98
3.4.3
GENERAL
SCHEME
OF
AN
APPARATUS-BASED
EVAPORATION
STAGE
.
103
3.4.4
PRODUCT
QUALITY
.
104
3.5
DEGASSING
OF
POLYMERS
IN
PURGE
BINS
.
108
HARALD
WILMS,
HANS
SCHNEIDER
3.5.1
INTRODUCTION
.
108
3.5.2
PROCESS
REQUIREMENTS
FOR
DEGASSING
OF
SOLIDS
.
109
3.5.3
BASICS
OF
PARTICLE
DEGASSSING
.
110
3.5.4
DETERMINATION
OF
DEGASSING
PROCESS
PARAMETERS
.
112
3.5.4.1
OVEN
TESTS
.
114
3.5.4.2
BATCH
TRIALS
.
114
3.5.4.3
PILOT
PLANT
TESTS
.
114
3.5.4.4
CRITERIA
FOR
THE
GAS
FLOW
RATE
FOR
DEGASSING
.
116
3.5.5
DESIGN
REQUIREMENTS
FOR
THE
DEGASSING
SILO
.
116
3.5.6
HEATING
OF
BULK
SOLIDS
.
119
3.5.7
ENERGY-EFFICIENT
PLANT
CONCEPTS
.
120
3.5.8
COMPARABLE
APPLICATIONS
.
121
3.5.9
SUMMARY
.
121
PART
C
PROCESSING
AFTER
POLYMER
PRODUCTION
-
COMPOUNDING
.
123
4
REQUIREMENTS,
PRODUCT
DEVELOPMENT,
ADDITIVES,
SOURCES
OF
FAULTS
.
125
4.1
COMPOUNDING
REQUIREMENTS
FROM
THE
COMPOUNDER
'
S
PERSPECTIVE
.
125
THOMAS
SCHULDT
4.1.1
INTRODUCTION
.
125
4.1.2 ECONOMICS
.
125
4.1.3
TECHNICAL
REQUIREMENTS
ALONG
THE
PROCESS
CHAIN
.
127
4.1.3.1
MATERIAL
HANDLING
.
127
4.1.3.2
RAW
MATERIAL
PRE-TREATMENT
.
129
4.1.3.3
PREMIXING
.
129
4.1.3.4
EXTRUDER
AND
WEAR
.
131
4.1.3.5
COOLING
AND
PELLETIZING
.
135
4.1.3.6
PACKAGING
.
136
4.1.4
QUALITY
CONTROL
.
137
4.1.5
ENVIRONMENTAL
ASPECTS
.
139
4.1.6
CONCLUSIONS
.
139
4.2
PRODUCT
DEVELOPMENT
.
140
THOMAS
SCHULDT
4.2.1
INTRODUCTION
.
140
4.2.2
TYPES
OF
PRODUCT
DEVELOPMENT
.
140
4.2.3
BUILDING
BLOCKS
OF
PRODUCT
DEVELOPMENT
.
142
4.2.3.1
EQUIPMENT
TECHNOLOGY
.
143
4.2.3.2
PROCESS
TECHNOLOGY
.
143
4.2.3.3
FORMULATION
.
143
4.2.4
INGREDIENTS
.
144
4.2.4.1
ADDITIVES
.
144
4.2.4.2
FILLERS
.
145
4.2.4.3
PIGMENTS
.
146
4.2.5
INNOVATION
.
148
4.2.6
QUALITY
CONTROL
.
149
4.2.7
SCALE-UP
.
150
4.3
ADDITIVES
FOR
POLYMERS
-
FROM
POLYMER
TO
PLASTIC
.
152
HERMANN
DIEM
4.3.1
BLENDS
.
152
4.3.1.1
DEFINITION
OF
BLENDS
.
152
4.3.1.2
CLASSIFICATION
OF
MULTI-PHASE
SYSTEMS
.
153
4.3.1.2.1
POLYMER
BLENDS
.
153
4.3.1.2.2
DRY
BLENDS
.
155
4.3.2
ADDITIVES
.
155
4.3.2.1
DEFINITION
OF
ADDITIVES
.
155
4.3.2.2
EFFECTS
AND
MODE
OF
OPERATION
OF
THE
ADDITIVES
.
156
4.3.2.2.1
PLASTICIZERS
.
156
4.3.2.2.2
STABILIZERS
.
156
4.3.2.3
INCORPORATION
OF
ADDITIVES
INTO
POLYMERS
.
158
4.3.3
FILLERS
.
159
4.3.3.1
DEFINITION
OF
FILLERS
.
159
4.3.3.2
CLASSIFICATION
AND
PROPERTIES
OF
FILLERS
.
159
4.3.3.3
ASPECT
RATIO
.
160
4.4
PRACTICAL
EXAMPLES
REGARDING
SOURCES
OF
FAULL/AVOIDANCE
OF
FAULTS
DURING
COMPOUNDING
.
161
KLEMENS
KOHLGRIIBER
4.4.1
BLACK
SPECKS
.
163
4.4.2
SOURCES
AT
DOSING
AND
MIXING
.
167
4.4.2.1
DEMIXING
.
167
4.4.2.2
DOSING
SYSTEM
.
168
4.4.2.3
MIXING
OF
POLYMER
WITH
ADDITIVES
.
169
4.4.3
DRIVE-MEASUREMENT
TECHNIQUE
.
170
4.4.4
FAULTS
IN
TESTS
WITH
SMALL
EXTRUDERS
FOR
SCALE-UP
PURPOSES
.
172
5
COMPOUNDING
WITH
CO-ROTATING
TWIN-SCREW
EXTRUDERS
.
177
5.1
INTRODUCTION
.
177
KLEMENS
KOHLGRIIBER
5.1.1
ADVANTAGES
OF
THE
CO-ROTATING
TWIN-SCREW
EXTRUDER
.
178
5.1.2
DISADVANTAGES
OF
THE
CO-ROTATING
TWIN-SCREW
EXTRUDER
.
180
5.1.3
RANGE
OF
SERVICES
AND
POWER
DENSITY
OF
CO-ROTATING
TWIN-SCREW
EXTRUDERS
.
181
5.1.4
PARAMETERS
IN
DEPENDENCE
ON
THE
DIAMETER
RATIO
.
183
5.1.4.1
STRENGTH
AND
THROUGHPUT
AS
A
FUNCTION
OF
DA/D
T
.
183
5.1.4.2
PRESSURE
AND
POWER
CHARACTERISTIC
AS
A
FUNCTION
OFDJDT
.
186
5.1.4.3
MAXIMUM
PRODUCT
VOLUME
.
188
5.1.4.4
INNER
SURFACE
OF
THE
HOUSING
TO
MAXIMUM
PRODUCT
SPACE
.
189
5.1.4.5
OUTLOOK
.
192
5.1.5
SPECIAL
TYPES
OF
CONSTRUCTION
OF
THE
CO-ROTATING
EXTRUDER
.
192
5.2
TASKS
AND
DESIGN
OF
THE
PROCESSING
ZONES
OF
A
COMPOUNDING
EXTRUDER
194
REINER
RUDOLF,
MICHAEL
BIERDEL
5.2.1
MELT
CONVEYING
ZONE
.
195
5.2.2
SOLIDS
CONVEYING
ZONE
.
201
5.2.3
PLASTIFICATION
ZONE
.
204
5.2.4
DISTRIBUTIVE
AND
DISPERSIVE
MIXING
ZONE
.
209
5.2.5
DEVOLATILIZATION
ZONE
.
214
5.2.6
PRESSURE
BUILD-UP
ZONE
.
216
5.2.7 COMPLETE
SCREW
CONFIGURATION
.
219
5.2.8
SPECIFIC
ENERGY
INPUT
.
222
5.2.9
RESIDENCE
TIME
CHARACTERISTICS
.
225
5.3
PROCESS
AND
SCREW
CONCEPTS
FOR
MACHINES
WITH
HIGH
THROUGHPUTS
.
229
FRANK
LECHNER
5.3.1
DEVELOPMENT
TO
HIGH
TORQUES,
VOLUMES,
AND
ROTATIONS
.
229
5.3.2
PARAMETERS
AND
PROCESS
LIMITS
OF
CO-ROTATING
TWIN-SCREW
KNEADERS
.
230
5.3.3
PROCESS
LENGTH
AND
SCREW
DEVELOPMENT
.
233
5.3.4
MAXIMUM
POSSIBLE
SCREW
SPEED
.
234
5.3.5
TORQUE-LIMITED
PROCESSES
.
235
5.3.6
VOLUME-LIMITED
PROCESSES
.
237
5.3.7
QUALITY-LIMITED
PROCESSES
.
241
5.3.8
PROCESS
CONCEPT
FOR
ECONOMICAL
COMPOUNDING
.
244
5.3.9
OUTLOOK
.
247
5.4
SCREW
DESIGNS
FOR
HIGHLY
FILLED
POLYMERS
(AND
DOSING
STRATEGIES)
.
247
SEBASTIAN
FRAAS
5.4.1
WHY
FILLER
COMPOUNDS?
.
247
5.4.2
TYPICAL
APPLICATIONS
.
248
5.4.3
MATERIAL-SPECIFIC
INFLUENCING
FACTORS
.
248
5.4.3.1
INFLUENCE
OF
FILLER
.
248
5.4.3.1.1
ORIGIN/MINING
.
250
5.4.3.1.2
PARTICLE
SIZE
AND PARTICLE
SIZE
DISTRIBUTION
.
250
5.4.3.1.3
COATING
.
250
5.4.3.1.4
MOISTURE
CONTENT
.
251
5.4.3.2
POLYMER
AND
ADDITIVES
.
252
5.4.4
PROCESS
TECHNOLOGY
.
252
5.4.4.1
CONVEYING
TECHNOLOGY
.
254
5.4.4.2
DOSING
EQUIPMENT
.
255
5.4.4.3
DOWNSTREAM
EQUIPMENT
.
256
5.4.4.4
BARREL
SETUP
OF
AN
EXTRUDER
FOR
HIGHLY
FILLED
COMPOUNDS
.
256
5.4.4.5
SCREW
DESIGN
.
260
5.4.4.5.1
MELTING
ZONE
.
260
5.4.4.5.2
FILLER
ADDITION
AND
WETTING
.
261
5.4.4.5.3
DISPERSION
ZONE
.
261
5.4.4.5.4
VACUUM
AND
DISCHARGE
ZONE
.
262
5.4.4.6
ENTIRE
SYSTEM
.
262
5.5
COMPOUNDING
OF
NATURAL
FIBER
REINFORCED
PLASTICS
.
263
DIJAN
ILIEW,
STEPHEN
KROLL,
ANDREA
SIEBERT-RATHS
5.5.1
PRE-KNOWLEDGE
FOR
THE
PROCESSING
OF
NATURAL
FIBERS
.
265
5.5.2
DESIGN
AND
PARAMETERIZATION
OF
THE
PROCESS
UNIT
OF
A
CO-ROTATING
TWIN-SCREW
EXTRUDER
.
271
5.6
FUNDAMENTALS
OF
THERMOPLASTIC
FOAM
EXTRUSION
BY
MEANS
OF
PARALLEL
TWIN-SCREW
EXTRUDERS
.
279
LUKAS
VOGEL
5.6.1
DEFINITION
AND
CHARACTERIZATION
OF
FOAMS
.
281
5.6.2
PROCESS
STEPS
FOR
FOAM
EXTRUSION
.
283
5.6.2.1
PROVISION
OF
THERMOPLASTIC
MELTS
.
284
5.6.2.2
ADDITION
AND
ADMIXING
OF
THE
PROPELLANT
(BLOWING
AGENT)
.
284
5.6.2.3
INJECTING
THE
BLOWING
AGENT
AND
CONDITIONING
OF
THE
MELT
.
285
5.6.2
A
DISCHARGE
OF
THE
MELT
THROUGH
THE
DIE
.
287
5.6.2.5
GROWTH
OF
CELLS
AND
STABILIZATION OF
THE
FOAM
STRUCTURE
.
289
5.6.3
SYSTEM
COMPONENTS
FOR
FOAM
EXTRUSION
.
293
5.7
SCREW
CONFIGURATIONS
.
298
MICHAEL
BIERDEL
5.8
MATERIALS,
COATINGS,
WEAR
TECHNOLOGY
.
313
OLIVER
KAYSER
5.8.1
REQUIREMENTS
TO
THE
COMPONENTS
FOR
COMPOUNDING
.
313
5.8.2
MATERIALS
AND
HEAT
TREATMENT
.
314
5.8.2.1
TEMPERING
STEELS
AND
NITRIDING
STEELS
.
315
5.8.2.2
HOT-WORK
STEELS
.
315
5.8.2.3
ALLOYED
COLD-WORK
STEELS
.
316
5.8.2.4
HIGH-SPEED
STEELS
.
317
5.8.3
EXECUTION
OF
COMPONENTS
OF
TWIN-SCREW
EXTRUDERS
.
317
5.8.4
PROCESS
OF
SURFACE
LAYER
HARDENING
.
319
5.8.4.1
WEAR
PROTECTION
BY
NITRIDING
.
320
5.8.4.2 AVOIDANCE
OF
ADHESIVE
WEAR
DUE
TO
NITRIDING
.
323
5.8.4.3 AVOIDANCE
OF
PITTING
CORROSION
BY
NITRIDING
.
324
5.8.4.4
SPECIAL
PROCESS
FOR
MAINTAINING
CORROSION
PROTECTION
.
324
5.8.5
WEAR
PROTECTION
BY
COATINGS
.
326
5.8.5.1
HARD
CHROMIUM
.
326
5.8.5.2
CHEMICAL
NICKEL
.
328
5.8.5.3
THIN
LAYERS
OF
HARD
MATERIAL
.
329
5.8.5.3.1
PHYSICAL
VAPOR
DEPOSITION
.
329
5.8.5.3.2
CHEMICAL
VAPOR
DEPOSITION
.
333
5.8.6
RECOMMENDATIONS
FOR
APPLICATION
.
336
5.8.7
SUMMARY
AND
OUTLOOK
.
337
6
COMPOUNDING
AND
POLYMER
PROCESSING
WITH
DIFFERENT
EXTRUDER
TYPES
.
341
6.1
EXTRUDER
TYPES
-
INTRODUCTION
.
341
KLEMENS
KOHLGRIIBER
6.1.1
COMPOUNDING
AND
PROCESSING
WITH
DIFFERENT
EXTRUDER
TYPES
341
6.1.2
SINGLE-SCREW
EXTRUDERS
.
344
6.1.3
GEAR
PUMPS
.
345
6.1.4
CO-ROTATING
TWIN-SCREW
EXTRUDERS
.
346
6.1.5
COUNTER-ROTATING
TWIN-SCREW
EXTRUDERS
.
347
6.1.6
MULTI-SCREW
EXTRUDERS:
RINGEXTRUDERS
AND
PLANETARY
ROLLER
EXTRUDERS
.
348
6.1.7
NON-SCREW
EXTRUDERS
.
349
6.1.8
HIGH-VISCOSITY
REACTORS
.
350
6.2
SINGLE-SCREW
EXTRUDER
.
351
GREGOR
KARRENBERG
6.2.1
APPLICATIONS
IN
COMPOUNDING
.
351
6.2.2
DESIGN
AND
FUNCTION
.
353
6.2.3
PLASTICIZING
EXTRUDER
.
356
6.2.4
MELT
EXTRUDER
.
361
6.2.5
DEGASSING
EXTRUDER
.
362
6.2.6
MIXING
ELEMENTS
FOR
SINGLE-SCREW
EXTRUDERS
.
364
6.2.7
SCALE-UP
METHODS
.
367
6.3
THE
RINGEXTRUDER
.
369
MICHAEL
ERDMANN
6.3.1
MECHANICAL
SETUP
.
370
6.3.2
PRINCIPLE
OF
MOVEMENT
AND
DISTRIBUTIVE
MIXING
.
373
6.3.3
DISPERSIVE
MIXING
.
374
6.3.4
DEGASSING
EFFICIENCY
.
375
6.3.5
HEAT
TRANSFER
-
SURFACE/VOLUME
RATIO
.
376
6.3.6
WEAR
PROTECTION
.
377
6.3.7
EXTRUDER
SERIES
AND
SCALE-UP
.
378
6.3.8
FIELDS
OF
APPLICATION
.
379
6.3.8.1
PET
RECYCLING
.
380
6.3.8.2
CONTINUOUS
PRODUCTION
OF
RUBBER
COMPOUNDS
.
381
6.4
COUNTER-ROTATING
INTERMESHING
TWIN
SCREWS
.
387
ERNST
KRUGER
6.4.1
UNDERSTANDING
OF
GELATION
OF
PVC
AS
A
REQUIREMENT
FOR
UNDERSTANDING
OF
TWIN
SCREWS
.
388
6.4.2
STRUCTURE
OF
A
PVC
GRAIN
.
389
6.4.3
SCHEME
OF
PVC
PROCESSING
.
390
6.4.4
MODEL
OF
PVC
COMPOUNDING
AND
PROCESSING
.
390
6.4.5
LEVEL
OF
GELATION
AND
MECHANICAL
PROPERTIES
.
391
6.4.6
FORMULATION
COMPONENTS
.
392
6.4.7
HOMOGENEITY
OF
THE
GELATION
LEVEL
.
392
6.4.8
HOMOGENEITY
IN
PVC
PROCESSING
.
393
6.4.9
INFLUENCE
OF
TEMPERATURE
ON
GELATION
HOMOGENEITY
.
394
6.4.10
TEMPERATURE
INSIDE
THE
8TO0
ADAPTER
.
394
6.4.11
BASICS
OF
SCREW
DESIGN
.
395
6.4.11.1
ZONES
OF
A
COUNTER-ROTATING
TWIN
SCREW
.
396
6.4.11.2
SPECIAL
FEATURES
OF
THE
SCREW
DESIGN
OF
COUNTER-ROTATING
TWIN
SCREWS
.
398
6.4.12
DESIGN
AND
WEAR
.
399
6.5
PLANETARY
ROLLER
EXTRUDER
.
404
ELARALD
RUST,
THOMAS
BIRR,
HOLGER
LANGE
6.5.1
INTRODUCTION
.
404
6.5.2
MECHANICAL
PRINCIPLE
.
405
6.5.3
CONSTRUCTION
.
406
6.5.4
CHARACTERISTICS
.
407
6.5.5
CONSTRUCTION
SIZES
AND
DESIGNATIONS
.
408
6.5.6
CONVEYING
AND
WORKING
PRINCIPLE
.
410
6.5.6.1
PARTIALLY
AND
FULLY
FILLED
AREAS
.
411
6.5.7
PLANETARY
SPINDLE
CONFIGURATION
.
412
6.5.7.1
TYPES
OF
PLANETARY
SPINDLES
.
413
6.5.7.2
PLANETARY
SPINDLE
LENGTHS
.
416
6.5.7.3
DISTRIBUTION
OF
PLANETARY
SPINDLES
.
418
6.5.8
INTERMEDIATE
RINGS
.
419
6.5.9
THE
MODULAR
SYSTEM
.
422
6.5.10
FEEDING
OF
SOLIDS
.
423
6.5.11
FEEDING
OF
LIQUIDS
.
427
6.5.12
DEGASSING
.
429
6.5.13
SENSOR
SYSTEM
.
438
6.5.14
PERIPHERAL
DEVICES
.
440
6.6
OSCILLATING
SCREW
KNEADER
OR
CONTINUOUS
KNEADER
.
442
HANS-ULRICH
SIEGENTHALER
6.6.1
INTRODUCTION
.
442
6.6.2
HISTORICAL
BACKGROUND
.
443
6.6.3
WORKING
PRINCIPLE
.
444
6.6.4
SHEAR
RATE
.
446
6.6.5
RESIDENCE
TIME
AND
RESIDENCE
TIME
DISTRIBUTION
.
448
6.6.6
TECHNICAL
DESIGN
.
450
6.6.6.1
MODULARITY
.
450
6.6.6.2
LINERS
.
452
6.6.6.3
SCREW
ELEMENTS
.
454
6.6.6A
KNEADING
BOLTS
AND
TEETH
.
456
6.6.6.5
TEMPERATURE
CONTROL
.
458
6.6.6.6
PRESSURE
BUILD-UP
SYSTEMS
.
461
6.6.7
APPLICATION
FIELDS
.
462
6.6.7.1
CABLE
COMPOUNDS
.
463
6.6.7.2
ENGINEERING AND
HIGH-PERFORMANCE
PLASTICS
.
464
6.6.7.3
PVC
APPLICATIONS
(GRANULATING AND
CALENDERING)
.
465
6.6.7.4
THERMOSET
APPLICATIONS
.
466
6.6.7.5
POWDER
COATINGS
AND
TONERS
.
466
6.6.7.6
ANODE
MASSES
FOR
ALUMINUM
PRODUCTION
.
467
6.6.7.7
SPECIALTIES
.
467
6.6.7.3
FOOD
APPLICATIONS
.
468
6.7
FARREL
POMINI
CONTINUOUS
MIXERS
.
470
PETER
GOHL,
ROMAN
KEBALO,
JOE
PEREIRA,
STUART
SARDINSKAS
6.7.1
INTRODUCTION
.
470
6.7.2
GENERAL
MECHANICAL
FEATURES
.
472
6.7.2.1
MECHANICAL
FEATURES:
MIXER
.
472
6.7.2.2
MECHANICAL
FEATURES:
EXTRUDER
.
473
6.7.3
FCM
CONFIGURATION
.
473
6.7.3.1
FEED
SECTION
.
473
6.7.3.2
MIXING
SECTION
.
473
6.7.
3.3
APEX
ZONE
.
474
6.7.3.4
ROTOR
ORIENTATION
.
475
6.7.4
PRINCIPLES
OF
OPERATION
.
478
6.7.4.1
HEATING
AND
COOLING
.
480
6.7.4.2
MIXER
BODY
SEGMENTS
AND
MIXING
DAMS
.
481
6.7.5
PROCESS
FLEXIBILITY
.
482
6.7.6
APPLICATIONS
.
484
6.7.7
ENERGY
SAVING
.
485
6.7.8
CONCLUSION
.
487
6.8
EXTRUDER
TYPES
-
COMPARISON
.
488
KLEMENS
KOHLGRIIBER,
MICHAEL
BIERDEL
6.8.1
QUESTIONS
TO
BE
ASKED
PRIOR
TO
A
COMPARISON
.
488
6.8.2 COSTS,
OPERATING
FIGURES,
SPECIFIC
ENERGY
.
490
6.8.3
CHARACTERISTIC
PROCESS
PROPERTIES
OF
DIFFERENT
EXTRUDER
TYPES
496
6.8.4
DESCRIPTIVE
EVALUATION
OF
EXTRUDERS
WITH
CURRENT
THROUGHPUTS
AND
SIZES
.
500
6.9
MRS
(MULTI-ROTATIONS
SYSTEM)
.
510
AXEL
HANNEMANN
6.9.1
MODE
OF
OPERATION
.
510
6.9.1.1
FEEDING
AND
PLASTIFICATION
IN
THE
MRS
.
510
6.9.1.2
THE
DEGASSING
DRUM
-
THE
HEART
OF
THE
MRS
TECHNOLOGY
.
511
6.9.1.3
CONVEYING
AND
PUMPING
.
514
6.9.2
CONTINUOUS
MEASURE
AND
CONTROL
OF
PROCESS
PARAMETERS
.
514
6.9.2.1
IMPORTANCE
OF
ACQUISITION
AND
CONTROL
OF
THE
PROCESS
PARAMETERS
MELT
PRESSURE,
TEMPERATURE,
AND
VISCOSITY
.
514
6.9.2.2
CONTROL
BY
MEANS
OF
ONLINE
VISCOMETER
VIS
.
514
6.9.3
ESSENTIAL
PROCESS-RELATED
INFLUENCING
FACTORS
DURING
PET
PROCESSING
.
515
6.9.3.1
DRYING
AND
EXTRUSION
.
515
6.9.4
PROCESSING
OF
OTHER
POLYMERS
.
519
6.9.4.1
RECYCLING
OF
POLYOLEFINS
.
519
6.9.4.2
MONOMER
REMOVAL
.
521
6.9.4.3
DECONTAMINATION
.
524
6.9.5
ENERGY
SAVINGS
WITH
THE
MRS
SYSTEM
.
525
6.9.6
RESULTS
.
526
7
PROCESSING
OF
POLYMER
MELTS
WITH
OTHER
DEVICES
AND
MACHINES
.
529
7.1
HIGH-VISCOSITY
REACTORS
.
529
OLIVER
SEEK
7.1.1
INTRODUCTION
.
529
7.1.2
SINGLE-SHAFT
HIGH-VISCOSITY
REACTORS
.
532
7.1.3
TWIN-SHAFT
HIGH-VISCOSITY
REACTORS
.
534
7.1.3.1
REACOM
.
534
7.1.3.2
REASIL
.
535
7.1.4
PRODUCT
TRANSPORT
.
536
7.1.5
ENERGY
INPUT
.
537
7.1.6 AXIAL
AND
RADIAL
MIXING
BEHAVIOR
.
538
7.1.7
DEVOLATILIZATION
.
541
7.1.8
APPARATUS
DESIGN
AND
SCALE-UP
.
544
7.1.9
SUMMARY
.
546
7.2
COMPOUNDING
OF
POLYMERS
BY
MEANS
OF
CALENDER
AND
FLAT
FILM
LINES
548
HARALD
RUST,
STEFAN
SEIBEL
7.2.1
HISTORY
.
548
7.2.2
CONTINUOUS
FEEDING
.
550
7.2.3
THE
PLANETARY
ROLLER
EXTRUDER
FOR
CALENDER
FEEDING
.
550
7.2.4
COMPARISON
OF
DIFFERENT
COMPOUNDING
SYSTEMS
.
551
7.2.5
MODERN
CALENDER
LINES
.
552
7.2.6
TYPES
OF
PELLETIZING
.
554
7.2.7
ROLL
MILL
AND
STRAINER
.
556
7.2.8
ROLL
MILL
.
556
7.2.9
STRAINER
.
556
7.2.10
EDGE
TRIMS
.
558
7.2.11
DIFFERENT
CALENDER
TYPES
.
559
7.2.12
SPECIAL
DESIGNS
.
561
7.2.13
DIFFERENCES
BETWEEN
CALENDERS
AND
CALANDRETTES
.
561
7.2.14
THE
TASK
OF
THE
CALENDER
AND
DIFFERENT
CALENDER
ROLLS
.
562
7.2.15
THE
SETUP
AND
MODE
OF
OPERATION
OF
A
CALENDER
.
564
7.2.16
POSSIBILITIES
OF
CORRECTION
.
565
7.2.17
TEMPERATURE
DISTRIBUTIONS
.
566
7.2.18
COMPARISON
OF
THE
TEMPERATURE
DISTRIBUTION
IN
THE
EDGE
AREAS
BETWEEN
A
CONVENTIONAL,
PERIPHERALLY
BORED
ROLL
AND
A
COILED
ROLL
.
566
7.2.19
STATIC
AND
THERMAL
COMPARISON
OF
CALENDER
ROLLS
IN
USE
TODAY
567
7.2.20
SPEEDS
AND
SIZES
.
567
7.2.21
THE
MINI
IMPRESSION
ROLLER
.
569
7.2.22
THICKNESS
MEASURING
AND
INSPECTION
UNIT
FOR
CONTAMINATION
.
570
7.2.23
WINDER
.
571
7.2.24
SHEET
AND
FILM
PRODUCTION
.
572
7.2.24.1
GEAR
PUMPS
.
572
7.2.24.2
FLAT
FILM
DIES
.
573
7.2.24.2.1
DIE
CONSTRUCTION
ALWAYS
IS
A
COMPROMISE
.
573
7.2.24.2.2
APPLICATION-SPECIFIC
DIE
EQUIPMENT
.
574
7.2.24.2.3
MULTI-LAYER
EXTRUSION
.
574
7.2.25
CHILL
ROLL
LINE
.
576
7.2.26
FLAT
FILM LINE
.
577
7.2.27
POLISHING
ROLLS
.
577
7.2.28
FOAM
SHEETS
OF
20
MM-200
MM
.
579
7.2.29
VACUUM
NAP
FILM
LINE
ACCORDING
TO
THE
FILM
CASTING
PRINCIPLE
FOR
CONSTRUCTION
NAP
FILM
.
580
7.2.30
TPU
FILM
LINE
FOR
DIRECT
EMBOSSING
BETWEEN
SILICONIZED
FABRIC
581
7.2.31
FILM
STRETCHING
LINES
.
581
7.2.32
INTRODUCTION
TO
THE
BIAX
PROCESS
USING
THE
EXAMPLE
OF
BOPP
.
582
7.2.32.1
RAW
MATERIAL
SUPPLY
AND
EXTRUSION
.
582
7.2.32.2
TDO
(TRANSVERSAL
DIRECTION
ORIENTER)
.
583
7.3
MIXING
AND
DISPERSION
.
585
7.3.1
FUNDAMENTALS:
HOMOGENEOUS
AND
DISPERSIVE
MIXING
.
585
JORG
KIRCHHOFF,
MICHAEL
BIERDEL
7.3.1.1
OVERVIEW,
PRINCIPLES,
AND
EXPERIMENTS
.
585
7.3.1.1.1
HOMOGENEOUS
MIXING
-
MIXING
IN
LAMINAR
FLOW
.
585
7.3.1.1.2
DISPERSIVE
MIXING
.
591
7.3.1.1.3
DETERMINING
THE
MIXING
QUALITY
.
598
7.3.1.2
THREE-DIMENSIONAL
CALCULATIONS
OF
MIXING
AND
RESIDENCE
TIME
BEHAVIOR
.
602
7.3.1.3
SUMMARY
.
608
7.3.2
STATIC
MIXERS
.
609
KLEMENS
KOHLGRIIBER
7.3.2.1
INTRODUCTION,
ADVANTAGES,
AND
DISADVANTAGES
.
609
7.3.2.2
CONSTRUCTION
TYPES
.
611
7.3.2.3
PROCESS
TECHNOLOGY
.
616
7.3.2.3.1
PRESSURE
LOSS
AND
MIXER
EVALUATION
.
616
7.3.2.3.2
REDUCTION
IN
LAYER
THICKNESS
DEPENDING
ON
THE
MIXING
LENGTH
-
DISTRIBUTIVE
MIXING
.
617
7.3.2.3.3
RESIDENCE
TIME
DISTRIBUTION
.
618
7.3.2.3.4
POWER
INPUT
AND
TEMPERATURE
.
618
7.3.2.3.5
GAS
DISPERSION
.
620
7.3.2.3.6
MIXING-IN
OF
ADDITIVES
.
621
7.3.2.3.7
HEAT
TRANSFER
.
621
7.3.2.3.8
SCALE-UP
OF
THE
MIXING
FUNCTION
.
622
7.3.2.4
STATIC
MIXERS
WITH
INTERNAL
TEMPERATURE
CONTROL
.
624
7.3.2.4.1
SMR
HEAT
EXCHANGER
.
625
7.3.2.4.2
COMPACT
HEAT
EXCHANGER
WITH
TEMPERATURE-CONTROLLED
X
INSTALLATIONS
625
PART
D
FURTHER
IMPORTANT
COMPONENTS
OF
A
PROCESSING
FACILITY
627
8
BULK
MATERIAL
TECHNOLOGY
IN
POLYMER
PROCESSING
.
629
8.1
SILO
DESIGN
FOR
FLOW
AND
STABILITY
.
629
HARALD
WILMS
8.1.1
SILOS
DISCHARGE
PROBLEMS
.
629
8.1.1.1
ARCHING
.
629
8.1.1.2
RATHOLING
.
630
8.1.1.3
ERRATIC
FLOW
.
631
8.1.1.4
FLUSHING
.
631
8.1.1.5
SEGREGATION
.
631
8.1.1.6
LEVEL
CONTROL
.
633
8.1.1.7
RESIDENCE
DISTRIBUTION
.
634
8.1.2
FLOW
PROFILES
IN
SILOS
.
635
8.1.3
SHEAR
TESTS
TO
DETERMINE
THE
FLOW
PROPERTIES
.
637
8.1.4
SILO
DESIGN
FOR
FLOW
.
641
8.1.4.1
HOPPER
WALL
INCLINATION
FOR
MASS
FLOW
.
642
8.1.4.2
OUTLET
DIAMETER
TO
AVOID
ARCHING
IN
MASS
FLOW
.
645
8.1.4.3
OUTLET
DIAMETER
TO
AVOID
RATHOLING
IN
FUNNEL
FLOW
.
649
8.1.4.4
INFLUENCE
OF
TIME
CONSOLIDATION
.
653
8.1.4.5
APPLICATION
OF
DISCHARGE
DEVICES
AND
DISCHARGE
AIDS
.
654
8.1.5
STRUCTURAL
ASPECTS
OF
SILO
DESIGN
.
656
8.1.5.1
PRESSURES
IN
SILOS
.
656
8.1.5.2
PRESSURE
PEAKS
IN
SILOS
.
657
8.1.5.3
ASYMMETRIC
FLOW
CHANNELS
.
658
8.2
BLENDING
SILOS
FOR
PLASTIC
COMPOUNDING
AND
PROCESSING
.
662
HARALD
WILMS
8.2.1
INTRODUCTION
.
662
8.2.2
REQUIREMENTS
FOR
BLENDING
SILOS
.
664
8.2.3
SURVEY
ON
BLENDING
SILO
DESIGNS
.
666
8.2.3.1
BLENDING
SILOS
WITH
MECHANICAL
ENERGY
INPUT
.
666
8.2.3.2
BLENDING
SILOS
WITH
PNEUMATIC
ENERGY
INPUT
.
667
8.2.3.3
GRAVITY
FLOW
BLENDING
SILOS
WITH
INTERNAL
BLEND
HOPPERS
.
669
8.2.3
A
GRAVITY
FLOW
BLENDING
SILOS
WITH
BLENDING
PIPES
.
671
B.2.3.5
MULTI-CHAMBER
BLENDING
SILOS
.
674
8.2.4
SELECTION
CRITERIA
.
675
8.2.5
SUMMARY
.
677
8.3
FEEDING
TECHNOLOGY
.
678
BERNHARD
HIIPPMEIER
8.3.1
BASICS
OF
FEEDING
TECHNOLOGY
.
679
8.3.2
DIFFERENT
FEEDING
TECHNOLOGIES
FOR
SOLIDS
.
681
8.3.3
LOSS-IN-WEIGHT
LIQUID
FEEDERS
.
686
8.3.4
LOSS-IN-WEIGHT
FEEDER
.
687
8.3.5
REQUIREMENTS
FOR
THE
WEIGH-FEEDERS
.
688
8.3.6
PLANT
IMPLEMENTATION
.
689
8.3.7
REFILL
.
691
8.3.8
VENTING
.
693
8.3.9
ATEX
.
694
8.3.10
ACCURACY
&
CONSISTENCY
(NAMUR)
.
695
8.3.11
CLEANING
AND
PRODUCT
CHANGE
.
696
8.3.12
CONTROL
AND
INTERFACES
.
696
8.3.13
FUTURE
OUTLOOK
.
696
8.3.14
SUMMARY
.
697
8.4
HIGH-INTENSIVE
MIXING
.
697
HARALD
WILMS,
HENNING
KREIS
8.4.1
INTRODUCTION
.
697
8.4.2
INTRODUCTION
TO
MIXING
OF
SOLIDS
.
698
8.4.2.1
MIXING
TASK
.
698
8.4.2.2
CLASSIFICATION
OF
MIXERS
.
699
8.4.2.3
SEGREGATION
.
699
8.4.2.4
DESCRIPTION
OF
THE
STATE
OF
MIXING
BY
STATISTICAL
MEANS
.
700
8.4.3
APPLICATIONS
FOR
HIGH-SPEED
MIXERS
.
702
8.4.3.1
PVC
PROCESSING
.
703
8.4.3.2
PRODUCTION
OF
WOOD-PLASTIC
COMPOUNDS
(WPC)
.
704
8.4.3.3
PRODUCTION
OF
COMPOUNDS
FOR
POWDER
INJECTION
MOLDING
(PIM)
.
704
8.4.3.4
PRODUCTION
OF
COMPOUNDS
FOR
BONDING
APPLICATIONS
704
8.4.4
MIXERS
OPERATING
IN
BATCH
MODE
.
705
8.4.4.1
FLUID
MIXERS
.
705
8.4.4.2
HIGH-SPEED
MIXERS
.
706
8.4.4.3
HEATING-COOLING
MIXER
COMBINATION
.
708
8.4.4.4
CONTAINER
MIXER
.
709
8.4.5
MIXERS
FOR
CONTINUOUS
OPERATION
.
710
8.4.6
SUMMARY
AND
OUTLOOK
.
712
8.5
PNEUMATIC
CONVEYING
IN
THE
POLYMER
INDUSTRY
.
714
HARALD
WILMS,
GUIDO
WINKHARDT
8.5.1
INTRODUCTION
.
714
8.5.2 CONVEYING
MODES
AND
FLOW
CHARACTERISTIC
.
715
8.5.3
DESIGN
OF
PNEUMATIC
CONVEYING
SYSTEMS
.
717
8.5.4
DESIGN
AND
OPERATION
OF
PNEUMATIC
CONVEYING
SYSTEMS
.
720
8.5.4.1
CONCEPT
AND
OPERATION
OF
A
DILUTE-PHASE
CONVEYING
SYSTEM
.
721
5.5.4.2
CONCEPT
AND
OPERATION
OF
DENSE-PHASE
CONVEYING
SYSTEMS
.
721
8.5.5
FEEDING
OF
SOLIDS
INTO
THE
CONVEYING
LINE
.
726
8.5.6
SUMMARY
.
727
9
GEAR
PUMPS
FOR
COMPOUNDING
.
731
SVEN
WIECZOREK
9.1
INTRODUCTION
-
GEAR
PUMPS
.
731
9.2
MODE
OF
OPERATION
OF
THE
GEAR
PUMP
.
732
9.3
GEAR
PUMP
FOR
COMPOUNDING
IN
THE
MAIN
FLOW
.
733
9.3.1
DESIGN
OF
THE
PUMP
.
734
9.3.1.1
HOUSING
AND
COVERS
.
735
9.3.1.2
GEARWHEELS
.
736
9.3.1.3
FRICTION
BEARING
.
738
9.3.1.4
AXIAL
SHAFT
SEAL
.
740
9.3.1.5
HEATING
.
741
9.3.2
INFLUENCE
OF
THE
PUMPED
MEDIUM
.
741
9.3.2.1
VISCOSITY
.
741
9.3.2.2
SOLIDS
.
743
9.3.3
CONTROL
SYSTEM
.
743
9.4
GEAR
PUMP
FOR
ADDITIVES
.
743
9.4.1
DESIGN
OF
THE
PUMP
.
743
9.4.1.1
HOUSING
AND
COVERS
.
744
9.4.1.2
GEARWHEELS
.
744
9.4.1.3
FRICTION
BEARING
.
745
9.4.1.4
AXIAL
SHAFT
SEAL
.
745
9.4.1.5
HEATING
.
745
9.4.2
INFLUENCE
OF
THE
PUMPED
MEDIUM
.
745
9.4.2.1
VISCOSITY
.
745
10
FILTERS
FOR
(HIGHLY)
VISCOUS
POLYMER
MELTS
.
747
THOMAS
GRIMM-BOSBACH
10.1
BASIC
PRINCIPLES
OF
POLYMER
FILTRATION
.
747
10.1.1
POSSIBLE
CONTAMINATION
OF
POLYMER
MELTS
.
748
10.1.2
USABLE
FILTER
MEDIA
.
749
10.1.3
DEFINITION
OF
POLYMER
MELT
FILTRATION
.
753
10.2
FILTRATION
SYSTEMS
.
754
10.2.1
LARGE-AREA
FILTERS
.
754
10.2.1.1
FILTER
CANDLES
.
755
10.2.1.2
FILTER
DISCS
.
756
10.2.2
SCREEN
CHANGERS
.
760
10.2.2.1
PISTON
SCREEN
CHANGERS
.
760
10.2.2.2
ROTARY
SCREEN
CHANGERS
.
763
10.2.3
MODERN
FILTRATION
SYSTEMS
-
ECONOMIC
CONSIDERATIONS
.
765
10.3
DESIGN
PROCEDURE
FOR
MELT
FILTERS
.
767
10.4
THE
"
RIGHT
"
FILTRATION
.
777
11
PELLETIZING
AND
DRYING
.
781
HARALD
ZANG,
HORST
MULLER
11.1
OVERVIEW
OF
PELLETIZING
PROCESSES
.
781
11.2
PROCESS
ENGINEERING
ASPECTS
OF
PELLETIZING
.
783
11.3
PROCESS
ENGINEERING
ASPECTS
OF
DRYING
.
786
11.4
PELLETIZING
AND
DRYING
IN
THE
POLYMER
PRODUCTION
.
787
11.4.1
TYPICAL
APPLICATION
REQUIREMENTS
.
787
11.4.2
UNDERWATER
PELLETIZING
TECHNOLOGY
FOR
POLYOLEFINS
.
788
11.4.3
AIR-COOLED
PELLETIZING
FOR
PVC
.
792
11.4.4
UNDERWATER
STRAND
PELLETIZING
.
793
11.4.5
PELLET
DRYING
AND
PROCESS
WATER
TREATMENT
IN
THE
POLYMER
PRODUCTION
.
794
11.5
PELLETIZING
AND
DRYING
IN
COMPOUNDING
PROCESSES
(FILLING,
REINFORCING,
ADDITIVATION,
BLENDING)
.
796
11.5.1
TYPICAL
APPLICATION
REQUIREMENTS
.
797
11.5.2
UNDERWATER
PELLETIZING
AND
DRYING
.
798
11.5.3
STRAND
DRY
CUT
(CONVENTIONAL
STRAND
PELLETIZING)
.
800
11.5.4
AUTOMATIC
STRAND
DRY
CUT
.
802
11.5.5
SPECIAL
PROCESSES
FOR
SPECIAL
APPLICATIONS
.
803
11.6
OTHER
PELLETIZING
AND
DRYING
PROCESSES
.
804
11.6.1
DICERS
.
804
11.6.2
WATER
RING
PELLETIZERS
.
805
11.6.3
ALTERNATIVE
PELLETIZING
PROCESSES
.
806
12
MEASUREMENT
TECHNOLOGY
.
809
CHRISTOPH
KUGLER,
JOHANNES
RUDLOFF,
CHRISTINA
HOFFMANN,
THOMAS
HOCHREIN
12.1
METROLOGICAL
BASICS
.
809
12.2
PRESSURE
AND
TEMPERATURE
MEASUREMENT
TECHNOLOGY
.
810
12.2.1
TEMPERATURE
.
811
12.2.2
PRESSURE
.
813
12.3
RHEOLOGICAL
METROLOGY
.
815
12.3.1
LABORATORY
RHEOMETERS
.
815
12.3.2
PROCESS
RHEOMETERS
.
817
12.4
OPTICAL
AND
SPECTROSCOPIC
METHODS
.
818
12.4.1
COLOR
MEASUREMENT
.
818
12.4.2
INFRARED
SPECTROSCOPY
.
819
12.4.3
MICROSCOPY
AND
IMAGE
ANALYSIS
.
820
12.4.4 OPTICAL
SORTING
SYSTEM
.
820
12.5
APPLICATION-RELATED
TESTS
.
823
12.6
FILTER
PRESSURE
TEST
.
824
12.7
SPECIAL
SYSTEMS
.
827
12.7.1
ULTRASONIC
MEASUREMENT
TECHNOLOGY
.
828
12.7.2
MODEL-PREDICTIVE
CONTROL
.
828
INDEX
.
831 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Kohlgrüber, Klemens 1952- Bierdel, Michael Rust, Harald 1949-2021 |
author_GND | (DE-588)1121710018 (DE-588)1198139943 (DE-588)1198140313 |
author_facet | Kohlgrüber, Klemens 1952- Bierdel, Michael Rust, Harald 1949-2021 |
author_role | aut aut aut |
author_sort | Kohlgrüber, Klemens 1952- |
author_variant | k k kk m b mb h r hr |
building | Verbundindex |
bvnumber | BV047639942 |
classification_rvk | ZM 5200 UV 9240 |
classification_tum | CIT 719 |
ctrlnum | (OCoLC)1289758432 (DE-599)DNB1233373307 |
discipline | Physik Werkstoffwissenschaften Chemie-Ingenieurwesen Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Physik Werkstoffwissenschaften Chemie-Ingenieurwesen Werkstoffwissenschaften / Fertigungstechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02975nam a22007218c 4500</leader><controlfield tag="001">BV047639942</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221012 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">211214s2022 gw a||| |||| 00||| ger d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,N20</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1233373307</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781569908372</subfield><subfield code="c">: circa EUR 299.99 (DE) (freier Preis), circa EUR 308.40 (AT) (freier Preis)</subfield><subfield code="9">978-1-56990-837-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1569908370</subfield><subfield code="9">1-56990-837-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781569908372</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 559/00837</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1289758432</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1233373307</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-210</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 5200</subfield><subfield code="0">(DE-625)158892:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UV 9240</subfield><subfield code="0">(DE-625)146923:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">660</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 719</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kohlgrüber, Klemens</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1121710018</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plastics compounding and polymer processing</subfield><subfield code="b">fundamentals, machines, equipment, application technology</subfield><subfield code="c">Klemens Kohlgrüber, Michael Bierdel, Harald Rust</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Munich</subfield><subfield code="b">Carl Hanser Verlag</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXI, 846 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kunststoffverarbeitung</subfield><subfield code="0">(DE-588)4114335-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Compoundierverfahren</subfield><subfield code="0">(DE-588)4520145-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aufbereitung</subfield><subfield code="0">(DE-588)4003500-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polymercompound</subfield><subfield code="0">(DE-588)4348644-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polymere</subfield><subfield code="0">(DE-588)4046699-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kunststoff</subfield><subfield code="0">(DE-588)4033676-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Compunding</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Plastics Production</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Preparation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">FBKTCOMP: Mischen und Compoundieren</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">PLAS2021</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kunststoffverarbeitung</subfield><subfield code="0">(DE-588)4114335-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Polymercompound</subfield><subfield code="0">(DE-588)4348644-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kunststoff</subfield><subfield code="0">(DE-588)4033676-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Aufbereitung</subfield><subfield code="0">(DE-588)4003500-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Compoundierverfahren</subfield><subfield code="0">(DE-588)4520145-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Polymere</subfield><subfield code="0">(DE-588)4046699-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Kunststoff</subfield><subfield code="0">(DE-588)4033676-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Aufbereitung</subfield><subfield code="0">(DE-588)4003500-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="3"><subfield code="a">Aufbereitung</subfield><subfield code="0">(DE-588)4003500-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bierdel, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1198139943</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rust, Harald</subfield><subfield code="d">1949-2021</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1198140313</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Hanser Publications</subfield><subfield code="0">(DE-588)1064064051</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-56990-838-9</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033024149&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033024149</subfield></datafield></record></collection> |
id | DE-604.BV047639942 |
illustrated | Illustrated |
index_date | 2024-07-03T18:47:41Z |
indexdate | 2024-11-25T18:02:39Z |
institution | BVB |
institution_GND | (DE-588)1064064051 |
isbn | 9781569908372 1569908370 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033024149 |
oclc_num | 1289758432 |
open_access_boolean | |
owner | DE-210 DE-12 DE-91 DE-BY-TUM DE-83 DE-703 |
owner_facet | DE-210 DE-12 DE-91 DE-BY-TUM DE-83 DE-703 |
physical | XXXI, 846 Seiten Illustrationen, Diagramme 25 cm |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Carl Hanser Verlag |
record_format | marc |
spellingShingle | Kohlgrüber, Klemens 1952- Bierdel, Michael Rust, Harald 1949-2021 Plastics compounding and polymer processing fundamentals, machines, equipment, application technology Kunststoffverarbeitung (DE-588)4114335-8 gnd Compoundierverfahren (DE-588)4520145-6 gnd Aufbereitung (DE-588)4003500-1 gnd Polymercompound (DE-588)4348644-7 gnd Polymere (DE-588)4046699-1 gnd Kunststoff (DE-588)4033676-1 gnd |
subject_GND | (DE-588)4114335-8 (DE-588)4520145-6 (DE-588)4003500-1 (DE-588)4348644-7 (DE-588)4046699-1 (DE-588)4033676-1 |
title | Plastics compounding and polymer processing fundamentals, machines, equipment, application technology |
title_auth | Plastics compounding and polymer processing fundamentals, machines, equipment, application technology |
title_exact_search | Plastics compounding and polymer processing fundamentals, machines, equipment, application technology |
title_exact_search_txtP | Plastics compounding and polymer processing fundamentals, machines, equipment, application technology |
title_full | Plastics compounding and polymer processing fundamentals, machines, equipment, application technology Klemens Kohlgrüber, Michael Bierdel, Harald Rust |
title_fullStr | Plastics compounding and polymer processing fundamentals, machines, equipment, application technology Klemens Kohlgrüber, Michael Bierdel, Harald Rust |
title_full_unstemmed | Plastics compounding and polymer processing fundamentals, machines, equipment, application technology Klemens Kohlgrüber, Michael Bierdel, Harald Rust |
title_short | Plastics compounding and polymer processing |
title_sort | plastics compounding and polymer processing fundamentals machines equipment application technology |
title_sub | fundamentals, machines, equipment, application technology |
topic | Kunststoffverarbeitung (DE-588)4114335-8 gnd Compoundierverfahren (DE-588)4520145-6 gnd Aufbereitung (DE-588)4003500-1 gnd Polymercompound (DE-588)4348644-7 gnd Polymere (DE-588)4046699-1 gnd Kunststoff (DE-588)4033676-1 gnd |
topic_facet | Kunststoffverarbeitung Compoundierverfahren Aufbereitung Polymercompound Polymere Kunststoff |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033024149&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kohlgruberklemens plasticscompoundingandpolymerprocessingfundamentalsmachinesequipmentapplicationtechnology AT bierdelmichael plasticscompoundingandpolymerprocessingfundamentalsmachinesequipmentapplicationtechnology AT rustharald plasticscompoundingandpolymerprocessingfundamentalsmachinesequipmentapplicationtechnology AT hanserpublications plasticscompoundingandpolymerprocessingfundamentalsmachinesequipmentapplicationtechnology |