Homotopy theory and arithmetic geometry – motivic and diophantine aspects LMS-CMI Research School, London, July 2018

- 1. Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects: an Introduction -- 2. An Introduction to A1-Enumerative Geometry -- 3. Cohomological Methods in Intersection Theory -- 4. Étale Homotopy and Obstructions to Rational Points -- 5. A1-Homotopy Theory and Contractible Varie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Neumann, Frank (HerausgeberIn), Ambrus, Pál (HerausgeberIn)
Format: Buch
Sprache:English
Veröffentlicht: Cham Springer [2021]
Schriftenreihe:Lecture notes in mathematics Volume 2292
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV047557937
003 DE-604
005 20220127
007 t|
008 211025s2021 sz |||| |||| 10||| eng d
020 |a 9783030789763  |c pbk  |9 978-3-030-78976-3 
035 |a (OCoLC)1277043902 
035 |a (DE-599)KXP1774386992 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a sz  |c XA-CH 
049 |a DE-188  |a DE-824  |a DE-83 
084 |a SI 850  |0 (DE-625)143199:  |2 rvk 
084 |a 57-06  |2 msc 
084 |a 14Gxx  |2 msc 
084 |a 11-06  |2 msc 
084 |a 55-06  |2 msc 
084 |a 11Gxx  |2 msc 
084 |a 14-06  |2 msc 
245 1 0 |a Homotopy theory and arithmetic geometry – motivic and diophantine aspects  |b LMS-CMI Research School, London, July 2018  |c Frank Neumann, Ambrus Pál, Editors 
264 1 |a Cham  |b Springer  |c [2021] 
300 |a ix, 215 Seiten  |b Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Lecture notes in mathematics  |v Volume 2292 
520 3 |a - 1. Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects: an Introduction -- 2. An Introduction to A1-Enumerative Geometry -- 3. Cohomological Methods in Intersection Theory -- 4. Étale Homotopy and Obstructions to Rational Points -- 5. A1-Homotopy Theory and Contractible Varieties: a Survey -- Index 
520 3 |a This book provides an introduction to state-of-the-art applications of homotopy theory to arithmetic geometry. The contributions to this volume are based on original lectures by leading researchers at the LMS-CMI Research School on ‘Homotopy Theory and Arithmetic Geometry - Motivic and Diophantine Aspects’ and the Nelder Fellow Lecturer Series, which both took place at Imperial College London in the summer of 2018. The contribution by Brazelton, based on the lectures by Wickelgren, provides an introduction to arithmetic enumerative geometry, the notes of Cisinski present motivic sheaves and new cohomological methods for intersection theory, and Schlank’s contribution gives an overview of the use of étale homotopy theory for obstructions to the existence of rational points on algebraic varieties. Finally, the article by Asok and Østvær, based in part on the Nelder Fellow lecture series by Østvær, gives a survey of the interplay between motivic homotopy theory and affine algebraic geometry, with a focus on contractible algebraic varieties. Now a major trend in arithmetic geometry, this volume offers a detailed guide to the fascinating circle of recent applications of homotopy theory to number theory. It will be invaluable to research students entering the field, as well as postdoctoral and more established researchers 
650 0 7 |a Algebraische Topologie  |0 (DE-588)4120861-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Arithmetische Geometrie  |0 (DE-588)4131383-5  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)1071861417  |a Konferenzschrift  |2 gnd-content 
689 0 0 |a Algebraische Topologie  |0 (DE-588)4120861-4  |D s 
689 0 1 |a Arithmetische Geometrie  |0 (DE-588)4131383-5  |D s 
689 0 |5 DE-604 
700 1 |a Neumann, Frank  |0 (DE-588)1014996538  |4 edt 
700 1 |a Ambrus, Pál  |0 (DE-588)124418487X  |4 edt 
710 2 |a Clay Mathematics Institute  |0 (DE-588)10038010-4  |4 orm 
710 2 |a London Mathematical Society  |0 (DE-588)1011030-6  |4 orm 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-030-78977-0  |w (DE-604)BV047552451 
830 0 |a Lecture notes in mathematics  |v Volume 2292  |w (DE-604)BV000676446  |9 2292 
943 1 |a oai:aleph.bib-bvb.de:BVB01-032933449 

Datensatz im Suchindex

_version_ 1819311558556123136
any_adam_object
author2 Neumann, Frank
Ambrus, Pál
author2_role edt
edt
author2_variant f n fn
p a pa
author_GND (DE-588)1014996538
(DE-588)124418487X
author_facet Neumann, Frank
Ambrus, Pál
building Verbundindex
bvnumber BV047557937
classification_rvk SI 850
ctrlnum (OCoLC)1277043902
(DE-599)KXP1774386992
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03561nam a2200517 cb4500</leader><controlfield tag="001">BV047557937</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220127 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">211025s2021 sz |||| |||| 10||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030789763</subfield><subfield code="c">pbk</subfield><subfield code="9">978-3-030-78976-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1277043902</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1774386992</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57-06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14Gxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11-06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55-06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11Gxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14-06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homotopy theory and arithmetic geometry – motivic and diophantine aspects</subfield><subfield code="b">LMS-CMI Research School, London, July 2018</subfield><subfield code="c">Frank Neumann, Ambrus Pál, Editors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">ix, 215 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">Volume 2292</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">- 1. Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects: an Introduction -- 2. An Introduction to A1-Enumerative Geometry -- 3. Cohomological Methods in Intersection Theory -- 4. Étale Homotopy and Obstructions to Rational Points -- 5. A1-Homotopy Theory and Contractible Varieties: a Survey -- Index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book provides an introduction to state-of-the-art applications of homotopy theory to arithmetic geometry. The contributions to this volume are based on original lectures by leading researchers at the LMS-CMI Research School on ‘Homotopy Theory and Arithmetic Geometry - Motivic and Diophantine Aspects’ and the Nelder Fellow Lecturer Series, which both took place at Imperial College London in the summer of 2018. The contribution by Brazelton, based on the lectures by Wickelgren, provides an introduction to arithmetic enumerative geometry, the notes of Cisinski present motivic sheaves and new cohomological methods for intersection theory, and Schlank’s contribution gives an overview of the use of étale homotopy theory for obstructions to the existence of rational points on algebraic varieties. Finally, the article by Asok and Østvær, based in part on the Nelder Fellow lecture series by Østvær, gives a survey of the interplay between motivic homotopy theory and affine algebraic geometry, with a focus on contractible algebraic varieties. Now a major trend in arithmetic geometry, this volume offers a detailed guide to the fascinating circle of recent applications of homotopy theory to number theory. It will be invaluable to research students entering the field, as well as postdoctoral and more established researchers</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Arithmetische Geometrie</subfield><subfield code="0">(DE-588)4131383-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Arithmetische Geometrie</subfield><subfield code="0">(DE-588)4131383-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neumann, Frank</subfield><subfield code="0">(DE-588)1014996538</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ambrus, Pál</subfield><subfield code="0">(DE-588)124418487X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Clay Mathematics Institute</subfield><subfield code="0">(DE-588)10038010-4</subfield><subfield code="4">orm</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">London Mathematical Society</subfield><subfield code="0">(DE-588)1011030-6</subfield><subfield code="4">orm</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-78977-0</subfield><subfield code="w">(DE-604)BV047552451</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">Volume 2292</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">2292</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032933449</subfield></datafield></record></collection>
genre (DE-588)1071861417 Konferenzschrift gnd-content
genre_facet Konferenzschrift
id DE-604.BV047557937
illustrated Not Illustrated
indexdate 2024-12-24T08:58:26Z
institution BVB
institution_GND (DE-588)10038010-4
(DE-588)1011030-6
isbn 9783030789763
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032933449
oclc_num 1277043902
open_access_boolean
owner DE-188
DE-824
DE-83
owner_facet DE-188
DE-824
DE-83
physical ix, 215 Seiten Diagramme
publishDate 2021
publishDateSearch 2021
publishDateSort 2021
publisher Springer
record_format marc
series Lecture notes in mathematics
series2 Lecture notes in mathematics
spelling Homotopy theory and arithmetic geometry – motivic and diophantine aspects LMS-CMI Research School, London, July 2018 Frank Neumann, Ambrus Pál, Editors
Cham Springer [2021]
ix, 215 Seiten Diagramme
txt rdacontent
n rdamedia
nc rdacarrier
Lecture notes in mathematics Volume 2292
- 1. Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects: an Introduction -- 2. An Introduction to A1-Enumerative Geometry -- 3. Cohomological Methods in Intersection Theory -- 4. Étale Homotopy and Obstructions to Rational Points -- 5. A1-Homotopy Theory and Contractible Varieties: a Survey -- Index
This book provides an introduction to state-of-the-art applications of homotopy theory to arithmetic geometry. The contributions to this volume are based on original lectures by leading researchers at the LMS-CMI Research School on ‘Homotopy Theory and Arithmetic Geometry - Motivic and Diophantine Aspects’ and the Nelder Fellow Lecturer Series, which both took place at Imperial College London in the summer of 2018. The contribution by Brazelton, based on the lectures by Wickelgren, provides an introduction to arithmetic enumerative geometry, the notes of Cisinski present motivic sheaves and new cohomological methods for intersection theory, and Schlank’s contribution gives an overview of the use of étale homotopy theory for obstructions to the existence of rational points on algebraic varieties. Finally, the article by Asok and Østvær, based in part on the Nelder Fellow lecture series by Østvær, gives a survey of the interplay between motivic homotopy theory and affine algebraic geometry, with a focus on contractible algebraic varieties. Now a major trend in arithmetic geometry, this volume offers a detailed guide to the fascinating circle of recent applications of homotopy theory to number theory. It will be invaluable to research students entering the field, as well as postdoctoral and more established researchers
Algebraische Topologie (DE-588)4120861-4 gnd rswk-swf
Arithmetische Geometrie (DE-588)4131383-5 gnd rswk-swf
(DE-588)1071861417 Konferenzschrift gnd-content
Algebraische Topologie (DE-588)4120861-4 s
Arithmetische Geometrie (DE-588)4131383-5 s
DE-604
Neumann, Frank (DE-588)1014996538 edt
Ambrus, Pál (DE-588)124418487X edt
Clay Mathematics Institute (DE-588)10038010-4 orm
London Mathematical Society (DE-588)1011030-6 orm
Erscheint auch als Online-Ausgabe 978-3-030-78977-0 (DE-604)BV047552451
Lecture notes in mathematics Volume 2292 (DE-604)BV000676446 2292
spellingShingle Homotopy theory and arithmetic geometry – motivic and diophantine aspects LMS-CMI Research School, London, July 2018
Lecture notes in mathematics
Algebraische Topologie (DE-588)4120861-4 gnd
Arithmetische Geometrie (DE-588)4131383-5 gnd
subject_GND (DE-588)4120861-4
(DE-588)4131383-5
(DE-588)1071861417
title Homotopy theory and arithmetic geometry – motivic and diophantine aspects LMS-CMI Research School, London, July 2018
title_auth Homotopy theory and arithmetic geometry – motivic and diophantine aspects LMS-CMI Research School, London, July 2018
title_exact_search Homotopy theory and arithmetic geometry – motivic and diophantine aspects LMS-CMI Research School, London, July 2018
title_full Homotopy theory and arithmetic geometry – motivic and diophantine aspects LMS-CMI Research School, London, July 2018 Frank Neumann, Ambrus Pál, Editors
title_fullStr Homotopy theory and arithmetic geometry – motivic and diophantine aspects LMS-CMI Research School, London, July 2018 Frank Neumann, Ambrus Pál, Editors
title_full_unstemmed Homotopy theory and arithmetic geometry – motivic and diophantine aspects LMS-CMI Research School, London, July 2018 Frank Neumann, Ambrus Pál, Editors
title_short Homotopy theory and arithmetic geometry – motivic and diophantine aspects
title_sort homotopy theory and arithmetic geometry motivic and diophantine aspects lms cmi research school london july 2018
title_sub LMS-CMI Research School, London, July 2018
topic Algebraische Topologie (DE-588)4120861-4 gnd
Arithmetische Geometrie (DE-588)4131383-5 gnd
topic_facet Algebraische Topologie
Arithmetische Geometrie
Konferenzschrift
volume_link (DE-604)BV000676446
work_keys_str_mv AT neumannfrank homotopytheoryandarithmeticgeometrymotivicanddiophantineaspectslmscmiresearchschoollondonjuly2018
AT ambruspal homotopytheoryandarithmeticgeometrymotivicanddiophantineaspectslmscmiresearchschoollondonjuly2018
AT claymathematicsinstitute homotopytheoryandarithmeticgeometrymotivicanddiophantineaspectslmscmiresearchschoollondonjuly2018
AT londonmathematicalsociety homotopytheoryandarithmeticgeometrymotivicanddiophantineaspectslmscmiresearchschoollondonjuly2018