Surrogates Gaussian process modeling, design, and optimization for the applied sciences
"Surrogates: a graduate textbook, or professional handbook, on topics at the interface between machine learning, spatial statistics, computer simulation, meta-modeling (i.e., emulation), design of experiments, and optimization. Experimentation through simulation, "human out-of-the-loop&quo...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton, FL
CRC Press
2020
|
Schriftenreihe: | Chapman & Hall/CRC texts in statistical science series
|
Schlagworte: | |
Online-Zugang: | https://www.taylorfrancis.com/books/9780367815493 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV047475929 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 210921s2020 xx o|||| 00||| eng d | ||
020 | |a 9780367815493 |c electronic book |9 9780367815493 | ||
020 | |a 0367815494 |c electronic book |9 0367815494 | ||
020 | |a 9781000766523 |c electronic book |9 9781000766523 | ||
020 | |a 9781000766202 |c electronic book |9 9781000766202 | ||
020 | |a 9781000766363 |c electronic book |9 9781000766363 | ||
024 | 7 | |a 10.1201/9780367815493 |2 doi | |
035 | |a (DE-599)HEB48201914X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
100 | 1 | |a Gramacy, Robert B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Surrogates |b Gaussian process modeling, design, and optimization for the applied sciences |c Robert B. Gramacy |
264 | 1 | |a Boca Raton, FL |b CRC Press |c 2020 | |
264 | 2 | |a London |b Taylor & Francis Group | |
300 | |a 1 Online-Ressource (xv, 543 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Chapman & Hall/CRC texts in statistical science series | |
520 | 3 | |a "Surrogates: a graduate textbook, or professional handbook, on topics at the interface between machine learning, spatial statistics, computer simulation, meta-modeling (i.e., emulation), design of experiments, and optimization. Experimentation through simulation, "human out-of-the-loop" statistical support (focusing on the science), management of dynamic processes, online and real-time analysis, automation, and practical application are at the forefront. Topics include: Gaussian process (GP) regression for flexible nonparametric and nonlinear modeling. Applications to uncertainty quantification, sensitivity analysis, calibration of computer models to field data, sequential design/active learning and (blackbox/Bayesian) optimization under uncertainty. Advanced topics include treed partitioning, local GP approximation, modeling of simulation experiments (e.g., agent-based models) with coupled nonlinear mean and variance (heteroskedastic) models. Treatment appreciates historical response surface methodology (RSM) and canonical examples, but emphasizes contemporary methods and implementation in R at modern scale. Rmarkdown facilitates a fully reproducible tour, complete with motivation from, application to, and illustration with, compelling real-data examples. Presentation targets numerically competent practitioners in engineering, physical, and biological sciences. Writing is statistical in form, but the subjects are not about statistics. Rather, they're about prediction and synthesis under uncertainty; about visualization and information, design and decision making, computing and clean code"--... | |
650 | 0 | 7 | |a Stochastische Analysis |0 (DE-588)4132272-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dynamisches System |0 (DE-588)4013396-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistisches Modell |0 (DE-588)4121722-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gauß-Prozess |0 (DE-588)4156111-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modellierung |0 (DE-588)4170297-9 |2 gnd |9 rswk-swf |
653 | 6 | |a Electronic books | |
689 | 0 | 0 | |a Statistisches Modell |0 (DE-588)4121722-6 |D s |
689 | 0 | 1 | |a Stochastische Analysis |0 (DE-588)4132272-1 |D s |
689 | 0 | 2 | |a Dynamisches System |0 (DE-588)4013396-5 |D s |
689 | 0 | 3 | |a Modellierung |0 (DE-588)4170297-9 |D s |
689 | 0 | 4 | |a Gauß-Prozess |0 (DE-588)4156111-9 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-367-41542-6 |
856 | 4 | 0 | |u https://www.taylorfrancis.com/books/9780367815493 |x Verlag |
912 | |a ZDB-7-TFC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032877507 |
Datensatz im Suchindex
_version_ | 1820160326714261504 |
---|---|
adam_text | |
any_adam_object | |
author | Gramacy, Robert B. |
author_facet | Gramacy, Robert B. |
author_role | aut |
author_sort | Gramacy, Robert B. |
author_variant | r b g rb rbg |
building | Verbundindex |
bvnumber | BV047475929 |
collection | ZDB-7-TFC |
ctrlnum | (DE-599)HEB48201914X |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001c 4500</leader><controlfield tag="001">BV047475929</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210921s2020 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780367815493</subfield><subfield code="c">electronic book</subfield><subfield code="9">9780367815493</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0367815494</subfield><subfield code="c">electronic book</subfield><subfield code="9">0367815494</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000766523</subfield><subfield code="c">electronic book</subfield><subfield code="9">9781000766523</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000766202</subfield><subfield code="c">electronic book</subfield><subfield code="9">9781000766202</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000766363</subfield><subfield code="c">electronic book</subfield><subfield code="9">9781000766363</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1201/9780367815493</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HEB48201914X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gramacy, Robert B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Surrogates</subfield><subfield code="b">Gaussian process modeling, design, and optimization for the applied sciences</subfield><subfield code="c">Robert B. Gramacy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, FL</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="2"><subfield code="a">London</subfield><subfield code="b">Taylor & Francis Group</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 543 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chapman & Hall/CRC texts in statistical science series</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Surrogates: a graduate textbook, or professional handbook, on topics at the interface between machine learning, spatial statistics, computer simulation, meta-modeling (i.e., emulation), design of experiments, and optimization. Experimentation through simulation, "human out-of-the-loop" statistical support (focusing on the science), management of dynamic processes, online and real-time analysis, automation, and practical application are at the forefront. Topics include: Gaussian process (GP) regression for flexible nonparametric and nonlinear modeling. Applications to uncertainty quantification, sensitivity analysis, calibration of computer models to field data, sequential design/active learning and (blackbox/Bayesian) optimization under uncertainty. Advanced topics include treed partitioning, local GP approximation, modeling of simulation experiments (e.g., agent-based models) with coupled nonlinear mean and variance (heteroskedastic) models. Treatment appreciates historical response surface methodology (RSM) and canonical examples, but emphasizes contemporary methods and implementation in R at modern scale. Rmarkdown facilitates a fully reproducible tour, complete with motivation from, application to, and illustration with, compelling real-data examples. Presentation targets numerically competent practitioners in engineering, physical, and biological sciences. Writing is statistical in form, but the subjects are not about statistics. Rather, they're about prediction and synthesis under uncertainty; about visualization and information, design and decision making, computing and clean code"--...</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistisches Modell</subfield><subfield code="0">(DE-588)4121722-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gauß-Prozess</subfield><subfield code="0">(DE-588)4156111-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistisches Modell</subfield><subfield code="0">(DE-588)4121722-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Gauß-Prozess</subfield><subfield code="0">(DE-588)4156111-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-367-41542-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.taylorfrancis.com/books/9780367815493</subfield><subfield code="x">Verlag</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-7-TFC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032877507</subfield></datafield></record></collection> |
id | DE-604.BV047475929 |
illustrated | Not Illustrated |
indexdate | 2025-01-02T17:49:14Z |
institution | BVB |
isbn | 9780367815493 0367815494 9781000766523 9781000766202 9781000766363 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032877507 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 Online-Ressource (xv, 543 pages) |
psigel | ZDB-7-TFC |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | CRC Press |
record_format | marc |
series2 | Chapman & Hall/CRC texts in statistical science series |
spelling | Gramacy, Robert B. Verfasser aut Surrogates Gaussian process modeling, design, and optimization for the applied sciences Robert B. Gramacy Boca Raton, FL CRC Press 2020 London Taylor & Francis Group 1 Online-Ressource (xv, 543 pages) txt rdacontent c rdamedia cr rdacarrier Chapman & Hall/CRC texts in statistical science series "Surrogates: a graduate textbook, or professional handbook, on topics at the interface between machine learning, spatial statistics, computer simulation, meta-modeling (i.e., emulation), design of experiments, and optimization. Experimentation through simulation, "human out-of-the-loop" statistical support (focusing on the science), management of dynamic processes, online and real-time analysis, automation, and practical application are at the forefront. Topics include: Gaussian process (GP) regression for flexible nonparametric and nonlinear modeling. Applications to uncertainty quantification, sensitivity analysis, calibration of computer models to field data, sequential design/active learning and (blackbox/Bayesian) optimization under uncertainty. Advanced topics include treed partitioning, local GP approximation, modeling of simulation experiments (e.g., agent-based models) with coupled nonlinear mean and variance (heteroskedastic) models. Treatment appreciates historical response surface methodology (RSM) and canonical examples, but emphasizes contemporary methods and implementation in R at modern scale. Rmarkdown facilitates a fully reproducible tour, complete with motivation from, application to, and illustration with, compelling real-data examples. Presentation targets numerically competent practitioners in engineering, physical, and biological sciences. Writing is statistical in form, but the subjects are not about statistics. Rather, they're about prediction and synthesis under uncertainty; about visualization and information, design and decision making, computing and clean code"--... Stochastische Analysis (DE-588)4132272-1 gnd rswk-swf Dynamisches System (DE-588)4013396-5 gnd rswk-swf Statistisches Modell (DE-588)4121722-6 gnd rswk-swf Gauß-Prozess (DE-588)4156111-9 gnd rswk-swf Modellierung (DE-588)4170297-9 gnd rswk-swf Electronic books Statistisches Modell (DE-588)4121722-6 s Stochastische Analysis (DE-588)4132272-1 s Dynamisches System (DE-588)4013396-5 s Modellierung (DE-588)4170297-9 s Gauß-Prozess (DE-588)4156111-9 s DE-604 Erscheint auch als Druck-Ausgabe 978-0-367-41542-6 https://www.taylorfrancis.com/books/9780367815493 Verlag |
spellingShingle | Gramacy, Robert B. Surrogates Gaussian process modeling, design, and optimization for the applied sciences Stochastische Analysis (DE-588)4132272-1 gnd Dynamisches System (DE-588)4013396-5 gnd Statistisches Modell (DE-588)4121722-6 gnd Gauß-Prozess (DE-588)4156111-9 gnd Modellierung (DE-588)4170297-9 gnd |
subject_GND | (DE-588)4132272-1 (DE-588)4013396-5 (DE-588)4121722-6 (DE-588)4156111-9 (DE-588)4170297-9 |
title | Surrogates Gaussian process modeling, design, and optimization for the applied sciences |
title_auth | Surrogates Gaussian process modeling, design, and optimization for the applied sciences |
title_exact_search | Surrogates Gaussian process modeling, design, and optimization for the applied sciences |
title_full | Surrogates Gaussian process modeling, design, and optimization for the applied sciences Robert B. Gramacy |
title_fullStr | Surrogates Gaussian process modeling, design, and optimization for the applied sciences Robert B. Gramacy |
title_full_unstemmed | Surrogates Gaussian process modeling, design, and optimization for the applied sciences Robert B. Gramacy |
title_short | Surrogates |
title_sort | surrogates gaussian process modeling design and optimization for the applied sciences |
title_sub | Gaussian process modeling, design, and optimization for the applied sciences |
topic | Stochastische Analysis (DE-588)4132272-1 gnd Dynamisches System (DE-588)4013396-5 gnd Statistisches Modell (DE-588)4121722-6 gnd Gauß-Prozess (DE-588)4156111-9 gnd Modellierung (DE-588)4170297-9 gnd |
topic_facet | Stochastische Analysis Dynamisches System Statistisches Modell Gauß-Prozess Modellierung |
url | https://www.taylorfrancis.com/books/9780367815493 |
work_keys_str_mv | AT gramacyrobertb surrogatesgaussianprocessmodelingdesignandoptimizationfortheappliedsciences |