Green communications for energy-efficient wireless systems and networks

The energy crisis, growth in data traffic and increasing network complexity are driving the development of energy-efficient architectures, technologies and networks. This edited book presents research from theory to practice, plus methods and technologies for designing next generation green wireless...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Stevenage Institution of Engineering and Technology 2020
Schriftenreihe:IET telecommunications series 91
Online-Zugang:DE-91
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Intro
  • Contents
  • About the editor
  • 1. Introduction | Himal A. Suraweera, Jing Yang, Alessio Zappone and John S. Thompson
  • 1.1 Energy-efficient resource allocation
  • 1.2 Network design and deployment
  • 1.3 Energy harvesting communications
  • 1.4 Efficient hardware design
  • 1.5 Overview of the textbook
  • References
  • Part I. Mathematical tools for energy efficiency
  • 2. Optimization techniques for energy efficiency | Bho Matthiesen and Eduard A. Jorswieck
  • 2.1 Introduction and motivation
  • 2.2 Fractional programming theory
  • 2.3 Global optimization
  • 2.4 Successive incumbent transcending scheme
  • 2.5 Sequential convex approximation
  • 2.6 Conclusions
  • 2.6.1 Further reading
  • References
  • 3. Deep learning for energy-efficient beyond 5G networks | Alessio Zappone, Marco Di Renzo and Merouane Debbah
  • 3.1 Introduction
  • 3.2 Integration into wireless networks: smart radio environments
  • 3.3 State-of-the-art review
  • 3.4 Energy efficiency optimization by deep learning
  • 3.5 Conclusions
  • References
  • 4. Scheduling resources in 5G networks for energy efficiency | Cristian Rusu and John Thompson
  • 4.1 Introduction
  • 4.2 Preliminaries
  • 4.3 The proposed scheduling algorithm
  • 4.4 Experimental results
  • 4.5 Conclusions
  • References
  • Part II. Renewable energy and energy harvesting
  • 5. Renewable energy-enabled wireless networks | Michela Meo and Daniela Renga
  • 5.1 Introduction
  • 5.2 Renewable energy to pursue mobile operator goals
  • 5.3 Scenarios
  • 5.4 Challenges, critical issues, and possible solutions
  • 5.5 Some case studies
  • 5.6 Conclusion
  • References
  • 6. Coverage and secrecy analysis of RF-powered Internet-of-Things | Mustafa A. Kishk, Mohamed A. Abd-Elmagid and Harpreet S. Dhillon
  • 6.1 Introduction
  • 6.2 RF-energy harvesting from a coexisting cellular network
  • 6.3 RF-energy harvesting from a coexisting, secrecy-enhancing network
  • Acknowledgment
  • References
  • 7. Backscatter communications for ultralow-power IoT: from theory to applications | Seung-Woo Ko, Kaifeng Han, Bruno Clerckx and Kaibin Huang
  • 7.1 BackCom basic principle
  • 7.2 BackCom networks
  • 7.3 Emerging backscatter communication technologies
  • 7.4 Performance enhancements of backscatter communication
  • 7.5 Applications empowered by backscatter communications
  • 7.6 Open issues and future directions
  • Acknowledgment
  • References
  • 8. Age minimization in energy harvesting communications | Ahmed Arafa1, Songtao Feng, Jing Yang, Sennur Ulukus and H. Vincent Poor
  • 8.1 Introduction: the age-of-information (AoI)
  • 8.2 Status updating over perfect channels
  • 8.3 Status updating over erasure channels
  • 8.4 Conclusion and outlook
  • References
  • Part III. Energy-efficient techniques and concepts for future networks
  • 9. Fundamental limits of energy efficiency in 5G multiple antenna systems | Andrea Pizzo, Luca Sanguinetti and Emil Björnson
  • 9.1 A primer on energy efficiency
  • 9.2 Massive MIMO
  • 9.3 Energy efficiency analysis
  • 9.4 State of the art on energy efficiency analysis
  • References
  • 10. Energy-efficient design for doubly massive MIMO millimeter wave wireless systems | Stefano Buzzi and Carmen D'Andrea
  • 10.1 Introduction
  • 10.2 Doubly massive MIMO systems
  • 10.3 System model
  • 10.4 Beamforming structures
  • 10.5 Asymptotic SE analysis
  • 10.6 EE maximizing power allocation
  • 10.7 Numerical results
  • 10.8 Conclusions
  • Acknowledgment
  • References
  • 11. Energy-efficient methods for cloud radio access networks | Kien-Giang Nguyen, Quang-Doanh Vu, Le-Nam Tran and Markku Juntti
  • 11.1 Introduction
  • 11.2 Energy efficiency optimization: mathematical preliminaries
  • 11.3 Cloud radio access networks: system model and energy efficiency optimization formulation
  • 11.4 Energy-efficient methods for cloud radio access networks
  • 11.5 Numerical examples
  • 11.6 Conclusion
  • References
  • 12. Energy-efficient full-duplex networks | Josè Mairton B. da Silva Jr., Christodoulos Skouroumounis, Ioannis Krikidis, Gábor Fodor and Carlo Fischione
  • 12.1 Introduction
  • 12.2 Literature review
  • 12.3 Single-cell analysis
  • 12.4 Multicell analysis
  • 12.5 Conclusion
  • References
  • 13. Energy-efficient resource allocation design for NOMA systems | ZhiqiangWei, Yuanxin Cai, Jun Li, DerrickWing Kwan Ng and Jinhong Yuan
  • 13.1 Introduction
  • 13.2 Fundamentals of NOMA
  • 13.3 Energy efficiency of NOMA
  • 13.4 Energy-efficient resource allocation design
  • 13.5 An illustrative example: energy-efficient design for multicarrier NOMA
  • 13.6 Simulation results and discussions
  • 13.7 Conclusions
  • A.1 Proof of Theorem 1
  • A.2 Proof of Theorem 2
  • References
  • 14. Energy-efficient illumination toward green communications | Hany Elgala, Ahmed F. Hussein and Monette H. Khadr
  • 14.1 Introduction
  • 14.2 Novel modulation techniques
  • 14.3 State-of-the-art VLC topics
  • 14.4 Conclusion
  • References
  • 15. Conclusions and future developments | Himal A. Suraweera, Jing Yang, Alessio Zappone and John S. Thompson
  • 15.1 Flattening the energy curve to support 5G evolution
  • 15.2 Potential solutions for a greener future
  • References
  • Index