Green communications for energy-efficient wireless systems and networks
The energy crisis, growth in data traffic and increasing network complexity are driving the development of energy-efficient architectures, technologies and networks. This edited book presents research from theory to practice, plus methods and technologies for designing next generation green wireless...
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Stevenage
Institution of Engineering and Technology
2020
|
Schriftenreihe: | IET telecommunications series
91 |
Online-Zugang: | DE-91 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Inhaltsangabe:
- Intro
- Contents
- About the editor
- 1. Introduction | Himal A. Suraweera, Jing Yang, Alessio Zappone and John S. Thompson
- 1.1 Energy-efficient resource allocation
- 1.2 Network design and deployment
- 1.3 Energy harvesting communications
- 1.4 Efficient hardware design
- 1.5 Overview of the textbook
- References
- Part I. Mathematical tools for energy efficiency
- 2. Optimization techniques for energy efficiency | Bho Matthiesen and Eduard A. Jorswieck
- 2.1 Introduction and motivation
- 2.2 Fractional programming theory
- 2.3 Global optimization
- 2.4 Successive incumbent transcending scheme
- 2.5 Sequential convex approximation
- 2.6 Conclusions
- 2.6.1 Further reading
- References
- 3. Deep learning for energy-efficient beyond 5G networks | Alessio Zappone, Marco Di Renzo and Merouane Debbah
- 3.1 Introduction
- 3.2 Integration into wireless networks: smart radio environments
- 3.3 State-of-the-art review
- 3.4 Energy efficiency optimization by deep learning
- 3.5 Conclusions
- References
- 4. Scheduling resources in 5G networks for energy efficiency | Cristian Rusu and John Thompson
- 4.1 Introduction
- 4.2 Preliminaries
- 4.3 The proposed scheduling algorithm
- 4.4 Experimental results
- 4.5 Conclusions
- References
- Part II. Renewable energy and energy harvesting
- 5. Renewable energy-enabled wireless networks | Michela Meo and Daniela Renga
- 5.1 Introduction
- 5.2 Renewable energy to pursue mobile operator goals
- 5.3 Scenarios
- 5.4 Challenges, critical issues, and possible solutions
- 5.5 Some case studies
- 5.6 Conclusion
- References
- 6. Coverage and secrecy analysis of RF-powered Internet-of-Things | Mustafa A. Kishk, Mohamed A. Abd-Elmagid and Harpreet S. Dhillon
- 6.1 Introduction
- 6.2 RF-energy harvesting from a coexisting cellular network
- 6.3 RF-energy harvesting from a coexisting, secrecy-enhancing network
- Acknowledgment
- References
- 7. Backscatter communications for ultralow-power IoT: from theory to applications | Seung-Woo Ko, Kaifeng Han, Bruno Clerckx and Kaibin Huang
- 7.1 BackCom basic principle
- 7.2 BackCom networks
- 7.3 Emerging backscatter communication technologies
- 7.4 Performance enhancements of backscatter communication
- 7.5 Applications empowered by backscatter communications
- 7.6 Open issues and future directions
- Acknowledgment
- References
- 8. Age minimization in energy harvesting communications | Ahmed Arafa1, Songtao Feng, Jing Yang, Sennur Ulukus and H. Vincent Poor
- 8.1 Introduction: the age-of-information (AoI)
- 8.2 Status updating over perfect channels
- 8.3 Status updating over erasure channels
- 8.4 Conclusion and outlook
- References
- Part III. Energy-efficient techniques and concepts for future networks
- 9. Fundamental limits of energy efficiency in 5G multiple antenna systems | Andrea Pizzo, Luca Sanguinetti and Emil Björnson
- 9.1 A primer on energy efficiency
- 9.2 Massive MIMO
- 9.3 Energy efficiency analysis
- 9.4 State of the art on energy efficiency analysis
- References
- 10. Energy-efficient design for doubly massive MIMO millimeter wave wireless systems | Stefano Buzzi and Carmen D'Andrea
- 10.1 Introduction
- 10.2 Doubly massive MIMO systems
- 10.3 System model
- 10.4 Beamforming structures
- 10.5 Asymptotic SE analysis
- 10.6 EE maximizing power allocation
- 10.7 Numerical results
- 10.8 Conclusions
- Acknowledgment
- References
- 11. Energy-efficient methods for cloud radio access networks | Kien-Giang Nguyen, Quang-Doanh Vu, Le-Nam Tran and Markku Juntti
- 11.1 Introduction
- 11.2 Energy efficiency optimization: mathematical preliminaries
- 11.3 Cloud radio access networks: system model and energy efficiency optimization formulation
- 11.4 Energy-efficient methods for cloud radio access networks
- 11.5 Numerical examples
- 11.6 Conclusion
- References
- 12. Energy-efficient full-duplex networks | Josè Mairton B. da Silva Jr., Christodoulos Skouroumounis, Ioannis Krikidis, Gábor Fodor and Carlo Fischione
- 12.1 Introduction
- 12.2 Literature review
- 12.3 Single-cell analysis
- 12.4 Multicell analysis
- 12.5 Conclusion
- References
- 13. Energy-efficient resource allocation design for NOMA systems | ZhiqiangWei, Yuanxin Cai, Jun Li, DerrickWing Kwan Ng and Jinhong Yuan
- 13.1 Introduction
- 13.2 Fundamentals of NOMA
- 13.3 Energy efficiency of NOMA
- 13.4 Energy-efficient resource allocation design
- 13.5 An illustrative example: energy-efficient design for multicarrier NOMA
- 13.6 Simulation results and discussions
- 13.7 Conclusions
- A.1 Proof of Theorem 1
- A.2 Proof of Theorem 2
- References
- 14. Energy-efficient illumination toward green communications | Hany Elgala, Ahmed F. Hussein and Monette H. Khadr
- 14.1 Introduction
- 14.2 Novel modulation techniques
- 14.3 State-of-the-art VLC topics
- 14.4 Conclusion
- References
- 15. Conclusions and future developments | Himal A. Suraweera, Jing Yang, Alessio Zappone and John S. Thompson
- 15.1 Flattening the energy curve to support 5G evolution
- 15.2 Potential solutions for a greener future
- References
- Index