Magnetic Memory Technology Spin-Transfer-Torque MRAM and Beyond

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tang, Denny D. (VerfasserIn), Pai, Chi-Feng (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Hoboken, NJ John Wiley & Sons, Incorporated 2021
Schlagworte:
Online-Zugang:DE-573
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Author Biographies
  • List of Cited Tables and Figures
  • Chapter 1 Basic Electromagnetism
  • 1.1 Introduction
  • 1.2 Magnetic Force, Pole, Field, and Dipole
  • 1.3 Magnetic Dipole Moment, Torque, and Energy
  • 1.4 Magnetic Flux and Magnetic Induction
  • 1.5 Ampère's Circuital Law, Biot-Savart Law, and Magnetic Field from Magnetic Material
  • 1.5.1 Ampère's Circuital Law
  • 1.5.2 Biot-Savart's Law
  • 1.5.3 Magnetic Field from Magnetic Material
  • 1.6 Equations, cgs-SI Unit Conversion Tables
  • Homework
  • References
  • Chapter 2 Magnetism and Magnetic Materials
  • 2.1 Introduction
  • 2.2 Origin of Magnetization
  • 2.2.1 From Ampère to Einstein
  • 2.2.2 Precession
  • 2.2.3 Electron Spin
  • 2.2.4 Spin-Orbit Interaction
  • 2.2.5 Hund's Rules
  • 2.3 Classification of Magnetisms
  • 2.3.1 Diamagnetism
  • 2.3.2 Paramagnetism
  • 2.3.3 Ferromagnetism
  • 2.3.4 Antiferromagnetism
  • 2.3.5 Ferrimagnetism
  • 2.4 Exchange Interactions
  • 2.4.1 Direct Exchange
  • 2.4.2 Indirect Exchange: Superexchange
  • 2.4.3 Indirect Exchange: RKKY Interaction
  • 2.4.4 Dzyaloshinskii-Moriya Interaction (DMI)
  • 2.5 Magnetization in Magnetic Metals and Oxides
  • 2.5.1 Slater-Pauling Curve
  • 2.5.2 Rigid Band Model
  • 2.5.3 Iron Oxides and Iron Garnets
  • 2.6 Phenomenology of Magnetic Anisotropy
  • 2.6.1 Uniaxial Anisotropy
  • 2.6.2 Cubic Anisotropy
  • 2.7 Origins of Magnetic Anisotropy
  • 2.7.1 Shape Anisotropy
  • 2.7.2 Magnetocrystalline Anisotropy (MCA)
  • 2.7.3 Perpendicular Magnetic Anisotropy (PMA)
  • 2.8 Magnetic Domain and Domain Walls
  • 2.8.1 Domain Wall
  • 2.8.2 Single Domain and Superparamagnetism
  • Homework
  • References
  • Chapter 3 Magnetic Thin Films
  • 3.1 Introduction
  • 3.2 Magnetic Thin Film Growth
  • 3.2.1 Sputter Deposition
  • 3.2.2 Molecular Beam Epitaxy (MBE)
  • 3.3 Magnetic Thin Film Characterization
  • 3.3.1 Vibrating-Sample Magnetometer (VSM)
  • 3.3.2 Magneto-Optical Kerr Effect (MOKE)
  • References
  • Chapter 4 Magnetoresistance Effects
  • 4.1 Introduction
  • 4.2 Anisotropic Magnetoresistance (AMR)
  • 4.3 Giant Magnetoresistance (GMR)
  • 4.4 Tunneling Magnetoresistance (TMR)
  • 4.5 Contemporary MTJ Designs and Characterization
  • 4.5.1 Perpendicular MTJ (p-MTJ)
  • 4.5.2 Fully Functional p-MTJ
  • 4.5.3 CIPT Approach for TMR Characterization
  • Homework
  • References
  • Chapter 5 Magnetization Switching and Field MRAMs
  • 5.1 Introduction
  • 5.2 Magnetization Reversible Rotation and Irreversible Switching Under External Field
  • 5.2.1 Magnetization Rotation Under an External Field in the Hard Axis Direction
  • 5.2.2 Magnetization Rotation and Switching Under an external Field in the Easy Axis Direction
  • 5.2.3 Magnetization Rotation and Switching Under Two Orthogonal External Fields
  • 5.2.4 Magnetization Behavior of a Synthetic Anti-ferromagnetic Film Stack
  • 5.3 Field MRAMs
  • 5.3.1 MTJ of Field MRAM
  • 5.3.2 Half-Select Bit Disturbance Issue
  • Homework
  • References
  • Chapter 6 Spin Current and Spin Dynamics
  • 6.1 Introduction to Hall Effects
  • 6.1.1 Ordinary Hall Effect
  • 6.1.2 Anomalous Hall Effect and Spin Hall Effect
  • 6.2 Spin Current
  • 6.2.1 Electron Spin Polarization in NM/FM/NM Film Stack
  • 6.2.2 Spin Current Injection, Diffusion, and Inverse Spin Hall Effect
  • 6.2.3 Generalized Carrier and Spin Current Drift-Diffusion Equation
  • 6.3 Spin Dynamics
  • 6.3.1 Landau-Lifshitz and Landau-Lifshitz-Gilbert Equations of Motion
  • 6.3.2 Ferromagnetic Resonance
  • 6.3.3 Spin Pumping and Effective Damping in FM/NM Film Stack
  • 6.3.4 FM/NM/FM Coupling Through Spin Current
  • 6.4 Interaction Between Polarized Conduction Electrons and Local Magnetization
  • 6.4.1 Electron Spin Torque Transfer to Local Magnetic Magnetization
  • 6.4.2 Macrospin Model
  • 6.4.3 Spin-Torque Transfer in a Spin Valve
  • 6.4.3.1 Switching Threshold Current Density
  • 6.4.3.2 Switching Time
  • 6.4.4 Spin-Torque Transfer Switching in Magnetic Tunnel Junction
  • 6.4.5 Spin-Torque Ferromagnetic Resonance and Torkance
  • 6.5 Spin Current Interaction with Domain Wall
  • 6.5.1 Domain Wall Motion under Spin Current
  • 6.5.2 Threshold Current Density
  • Homework
  • References
  • Chapter 7 Spin-Torque-Transfer (STT) MRAM Engineering
  • 7.1 Introduction
  • 7.2 Thermal Stability Energy and Switching Energy
  • 7.3 STT Switching Properties
  • 7.3.1 Switching Probability and Write Error Rate (WER)
  • 7.3.2 Switching Current in Precessional Regime
  • 7.3.3 Switching Delay of an STT-MRAM Cell
  • 7.3.4 Read Disturb Rate
  • 7.3.5 Switching Under a Magnetic Field - Phase Diagram
  • 7.3.6 MTJ Switching Abnormality
  • 7.3.6.1 Magnetic Back-Hopping
  • 7.3.6.2 Bifurcation Switching (Ballooning in WER)
  • 7.3.6.3 Domain Mediated Magnetization Reversal
  • 7.4 The Integrity of MTJ Tunnel Barrier
  • 7.4.1 MgO Degradation Model
  • 7.5 Data Retention
  • 7.5.1 Retention Determination Based on Bit Switching Probability
  • 7.5.2 Energy Barrier Determination Based on Aiding Field
  • 7.5.3 Energy Barrier Extraction with Retention Bake at Chip Level
  • 7.5.4 Data Retention Fail at the Chip Level
  • 7.6 The Cell Design Considerations and Scaling
  • 7.6.1 STT-MRAM Bit Cell and Array
  • 7.6.2 CMOS Options
  • 7.6.3 Cell Switching Efficiency
  • 7.6.4 Cell Design Considerations
  • 7.6.4.1 WRITE Current and Cell Size
  • 7.6.4.2 READ Access Performance and RA Product of MTJ
  • 7.6.4.3 READ and WRITE Voltage Margins
  • 7.6.4.4 Stray Field Control for Perpendicular MTJ
  • 7.6.4.5 Suppress Stochastic Switching Time Variation Ideas
  • 7.6.5 The Scaling of MTJ for Memory
  • 7.6.5.1 In-Plane MTJ
  • 7.6.5.2 Out-of-Plane (Perpendicular) MTJ
  • 7.7 MTJ SPICE Models
  • 7.7.1 Basic MTJ Equivalent Circuit Model for Circuit Design Simulation
  • 7.7.2 MTJ SPICE Circuit Model with Embedded Macrospin Calculator
  • 7.8 Test Chip, Test, and Chip-Level Weak Bit Screening
  • 7.8.1 Read Marginal Bits
  • 7.8.2 Write Marginal Bits
  • 7.8.3 Short Retention Bits
  • 7.8.4 Low Endurance Bits
  • Homework
  • References
  • Chapter 8 Advanced Switching MRAM Modes
  • 8.1 Introduction
  • 8.2 Current-Induced-Domain-Wall Motion (CIDM) Memory
  • 8.2.1 Single-Bit Cell
  • 8.2.2 Multibit Cell: Racetrack
  • 8.3 Spin-Orbit Torque (SOT) Memory
  • 8.3.1 Spin Orbit Torque (SOT) MRAM Cells
  • 8.3.1.1 In-Plane SOT Cell
  • 8.3.1.1.1 Cell Engineering and Device Properties
  • 8.3.1.1.2 Cell Scaling
  • 8.3.1.2 Perpendicular SOT Cell
  • 8.3.2 Materials Choice for SOT-MRAM Cell
  • 8.3.2.1 Transition Metals and their Alloys
  • 8.3.2.2 Emergent Materials Systems
  • 8.3.2.3 Benchmarking of SOT Switching Efficiency
  • 8.4 Magneto-Electric Effect and Voltage-Control Magnetic Anisotropy (VCMA) MRAM
  • 8.4.1 Magneto-Electric Effects
  • 8.4.2 VCMA-Assisted MRAMs
  • 8.4.2.1 VCMA-Assisted Field-MRAM
  • 8.4.2.2 VCMA-Assisted Multi-bit-Word SOT-MRAM
  • 8.4.2.3 VCMA-Assisted Precession-Toggle MRAM
  • 8.5 Relative Merit of Advanced Switching Mode MRAMs
  • Homework
  • References
  • Chapter 9 MRAM Applications and Production
  • 9.1 Introduction
  • 9.2 Intrinsic Characteristics and Product Attributes of Emerging Nonvolatile Memories
  • 9.2.1 Intrinsic Properties
  • 9.2.2 Product Attributes
  • 9.3 Memory Landscape and MRAM Opportunity
  • 9.3.1 MRAM as Embedded Memory in Logic Chips
  • 9.3.1.1 Integration Issues of Embedded MRAM
  • 9.3.1.2 MRAM as Embedded Flash in Microcontroller
  • 9.3.1.3 Embedded MRAM Cell Size
  • 9.3.1.4 MRAM as Cache Memory in Processor
  • 9.3.1.5 Improvement of Access Latency
  • 9.3.2 High-Density Discrete MRAM
  • 9.3.2.1 Technology Status
  • 9.3.2.2 Ideal CMOS Technology for High-Density MRAM
  • 9.3.2.3 Improvement to Endurance and Write Error Rate with Error Buffer in Chip Architecture
  • 9.3.3 Applications and Market Opportunity of MRAM
  • 9.3.3.1 Battery-Backed DRAM Applications
  • 9.3.3.2 Internet of Things (IoT) and Cybersecurity Applications
  • 9.3.3.3 Applications to In-Memory Computing, and Artificial Intelligence (AI)
  • 9.3.3.4 MRAM-Based Memory-Driven Computer
  • 9.4 MRAM Production
  • 9.4.1 MRAM Production Ecosystem
  • 9.4.2 MRAM Product History
  • 9.4.2.1 First-Generation MRAM - Field MRAM (Also Called Toggle MRAM)
  • 9.4.2.2 The Second-Generation MRAM - STT-MRAM
  • 9.4.2.3 The Potential Third-Generation MRAM - SOT MRAM
  • Homework
  • References
  • Appendix A Retention Bake (Including Two-Way Flip)
  • Reference
  • Appendix B Memory Functionality-Based Scaling
  • B.1 Introduction
  • B.2 Operating Parameters for Write Endurance Failure Analysis
  • B.3 Functional Requirements for Scaling
  • B.3.1 Write Function - Switching Current Density
  • B.3.2 Read Function - Read Speed and Read Signal
  • B.4 Scaling Procedure
  • B.5 Scaling Impacts
  • B.5.1 VSW and JVSW
  • B.5.2 Read Disturb
  • B.5.3 Switching Current
  • B.5.4 Nonvolatile Function - Data Retention
  • B.5.5 Remarks on Temperature
  • B.6 Write Endurance and its Lifetime Characterization Method
  • B.7 Summary
  • References
  • Appendix C High-Bandwidth Design Considerations for STT-MRAM
  • C.1 Introduction
  • C.2 DRAM Fundamentals
  • C.2.1 Cell and Sense Amplifier - Basic Operations
  • C.2.2 Terminologies
  • C.2.3 Basic Approach of High-Bandwidth SDRAM
  • C.2.4 SDRAM Operation Mechanism
  • C.2.5 SDRAM Performance
  • C.3 Random Row Access Performance Analysis
  • C.4 STT-MRAM Fundamentals
  • C.4.1 Cell and Basic Operation
  • C.4.2 On-Chip Error-Correcting Code (ECC)