Introduction to geometric algebra computing Computing with Circles and Lines

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hildenbrand, Dietmar (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Milton Chapman and Hall/CRC [2018]
Schriftenreihe:Computer Vision Ser
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Dedication
  • Table of Contents
  • Foreword
  • Preface
  • Acknowledgments
  • Chapter 1 ▪ Introduction
  • 1.1 Geometric Algebra
  • 1.2 Geometric Algebra Computing
  • 1.3 Outline
  • 1.3.1 SECTION I : Tutorial
  • 1.3.2 SECTION II : Mathematical Foundations
  • 1.3.3 SECTION III : Applications
  • 1.3.4 SECTION IV : Geometric Algebra at School
  • Section I: Tutorial
  • Chapter 2 ▪ Compass Ruler Algebra in a Nutshell
  • 2.1 Geometric Objects
  • 2.2 Angles and Distances
  • 2.3 Transformations
  • Chapter 3 ▪ GAALOP Tutorial for Compass Ruler Algebra
  • 3.1 GAALOP and GAALOPscript
  • 3.2 Geometric Objects
  • 3.2.1 Point
  • 3.2.2 Circle
  • 3.2.3 Line
  • 3.2.4 Point pair
  • 3.2.5 Perpendicular Bisector
  • 3.2.6 The Difference of two Points
  • 3.2.7 The Sum of Points
  • 3.3 Angles and Distances
  • 3.3.1 Distance Point-Line
  • 3.3.2 Angle between two Lines
  • 3.3.3 Distance between two Circles
  • 3.4 Geometric Transformations
  • 3.4.1 Reflections
  • 3.4.1.1 Rotations based on reflections
  • 3.4.1.2 Translations based on reflections
  • 3.4.1.3 Inversions
  • 3.4.2 Rotors
  • 3.4.3 Translators
  • 3.4.4 Motors
  • Section II Mathematical Foundations
  • Chapter 4 ▪ Mathematical Basics and 2D Euclidean Geometric Algebra
  • 4.1 The Basic Algebraic Elements of Geometric Algebra
  • 4.2 The Products of Geometric Algebra
  • 4.2.1 The Outer Product
  • 4.2.2 The Inner Product
  • 4.2.3 The Geometric Product
  • 4.3 The Imaginary Unit in Geometric Algebra
  • 4.4 The Inverse
  • 4.5 The Dual
  • 4.6 The Reverse
  • Chapter 5 ▪ Compass Ruler Algebra and Its Geometric Objects
  • 5.1 The Algebraic Structure
  • 5.2 The Basic Geometric Entities and Their Null Spaces
  • 5.3 Points
  • 5.4 Lines
  • 5.5 Circles
  • 5.6 Normalized Objects
  • 5.7 The Difference of Two Points
  • 5.8 The Sum of Points
  • 5.9 The Meaning of E0 and E∞
  • 5.10 Line as a Limit of a Circle
  • 5.11 Point Pairs
  • Chapter 6 ▪ Intersections in Compass Ruler Algebra
  • 6.1 The IPNS of the Outer Product of Two Vectors
  • 6.2 The Role of E1 ˄ E2
  • 6.3 The Intersection of Two Lines
  • 6.4 The Intersection of Two Parallel Lines
  • 6.5 The Intersection of Circle-Line
  • 6.6 Oriented Points
  • 6.7 The Intersection of Circles
  • Chapter 7 ▪ Distances and Angles in Compass Ruler Algebra
  • 7.1 Distance between Points
  • 7.2 Distance between a Point and a Line
  • 7.3 Angles between Lines
  • 7.4 Distance between a Line and a Circle
  • 7.5 Distance Relations between a Point and a Circle
  • 7.6 Is a Point Inside or Outside a Circle?
  • 7.7 Distance to the Horizon
  • 7.8 Distance Relations between Two Circles
  • 7.8.1 Distance between Circles with Equal Radii
  • 7.8.2 Example of Circles with Di erent Radii
  • 7.8.3 General Solution
  • 7.8.4 Geometric Meaning
  • Chapter 8 ▪ Transformations of Objects in Compass Ruler Algebra
  • 8.1 Reflection at the Coordinate Axes
  • 8.2 The Role of E1 ˄ E2
  • 8.3 Arbitrary Reflections
  • 8.4 Rotor Based on Reflections
  • 8.5 Translation
  • 8.6 Rigid Body Motion
  • 8.7 Multivector Exponentials
  • 8.8 Inversion and the Center of a Circle or Point Pair
  • Section III Applications
  • Chapter 9 ▪ Robot Kinematics Using GAALOP
  • 9.1 Inverse Kinematics Using GAALOP
  • 9.2 Steps to Reach the Target
  • 9.3 Movement Toward the Target
  • Chapter 10 ▪ Detection of Circles and Lines in Images Using GAALOP
  • 10.1 CGAVS Algorithm
  • 10.2 GAALOP Implementation
  • Chapter 11 ▪ Visibility Application in 2D Using GAALOP
  • 11.1 Is a Circle Outside a 2D Cone?
  • 11.2 Visibility Sequence
  • Chapter 12 ▪ Runtime-Performance Using GAALOP
  • 12.1 C Code of the Standard CGAVS Implementation
  • 12.2 Avoiding Normalizations
  • 12.3 Avoiding Explicit Statement Computations
  • 12.4 New CGAVS Algorithm
  • 12.5 Hardware Implementation Based on GAALOP
  • Chapter 13 ▪ Fitting of Lines or Circles into Sets of Points
  • 13.1 Distance Measure
  • 13.2 Least-Squares Approach
  • Chapter 14 ▪ CRA-Based Robotic Snake Control
  • 14.1 Robotic Snakes
  • 14.2 Direct Kinematics
  • 14.2.1 Singular positions
  • 14.3 Differential Kinematics
  • 14.4 3-Link Snake Model
  • Chapter 15 ▪ Expansion to 3D Computations
  • 15.1 CLUCalc for 3D Visualizations
  • 15.2 The Geometric Objects of CGA
  • 15.3 Angles and Distances in 3D
  • 15.4 3D Transformations
  • 15.5 CLUCalc Implementation of the Snake Robot Control
  • 15.6 3D Computations with GAALOP
  • 15.7 Visibility Application in 3D
  • 15.8 Conclusion of the Engineering Part
  • Section IV Geometric Algebra at School
  • Chapter 16 ▪ Geometric Algebra for Mathematical Education
  • 16.1 Basic DGS Functionality Based on GAALOP
  • 16.2 Geometric Constructions Based on Compass Ruler Algebra
  • 16.3 Deriving of Formulae
  • 16.4 Proving Geometric Relationships
  • 16.5 Outlook
  • Chapter 17 ▪ Space-Time Algebra in School and Application
  • 17.1 The Algebraic Structure of Space-Time Algebra
  • 17.2 Space-Time Algebra at School
  • 17.3 A Faraday Example for Mathematica's Opencllink
  • Bibliography
  • Index