Spatial analysis with R statistics, visualization, and computational methods

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Oyana, Tonny J. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boca Raton ; London ; New York CRC Press [2021]
Ausgabe:Second edition
Schlagworte:
Online-Zugang:DE-91
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV047441910
003 DE-604
005 20211214
007 cr|uuu---uuuuu
008 210827s2021 xx a||| o|||| 00||| eng d
020 |a 9781000173451  |9 978-1-00-017345-1 
020 |a 9781003021643  |9 978-1-003-02164-3 
035 |a (ZDB-30-PQE)EBC6317218 
035 |a (ZDB-30-PAD)EBC6317218 
035 |a (ZDB-89-EBL)EBL6317218 
035 |a (OCoLC)1190857072 
035 |a (DE-599)BVBBV047441910 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-91 
082 0 |a 519.5 
084 |a RB 10104  |0 (DE-625)142220:12617  |2 rvk 
100 1 |a Oyana, Tonny J.  |e Verfasser  |0 (DE-588)1082383678  |4 aut 
245 1 0 |a Spatial analysis with R  |b statistics, visualization, and computational methods  |c Tonny J. Oyana 
250 |a Second edition 
264 1 |a Boca Raton ; London ; New York  |b CRC Press  |c [2021] 
264 4 |c © 2021 
300 |a 1 Online-Ressource (xix, 333 Seiten)  |b Illustrationen, Karten 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Description based on publisher supplied metadata and other sources 
505 8 |a Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- Author -- 1. Understanding the Context and Relevance of Spatial Analysis -- Learning Objectives -- Introduction -- From Data to Information, to Knowledge, and Wisdom -- Spatial Analysis Using a GIS Timeline -- Spatial Analysis in the Post-1990s Period -- Data Science, GIS, and Artificial Intelligence -- Geographic Data: Properties, Strengths, and Analytical Challenges -- Concept of Scale -- Concept of Spatial Dependency -- Concept of Spatial Proximity -- Modifiable Areal Unit Problem -- Concept of Spatial Autocorrelation -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Working with R -- Getting Started -- Working with Spatial Data -- Tips for Working with R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 2. Making Scientific Observations and Measurements in Spatial Analysis -- Learning Objectives -- Introduction -- Scales of Measurement -- Nominal Scale -- Ordinal Scale -- Interval Scale -- Ratio Scale -- Two Main Approaches for Data Collection That Involve Deductive and Inductive Reasoning -- Population and Sample -- Spatial Sampling -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Step I. View Data Structure -- Step II. Basic Data Summaries -- Step III. Exploring the Spatial Data -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 3. Using Statistical Measures to Analyze Data Distributions -- Learning Objectives -- Introduction -- Descriptive Statistics -- Measures of Central Tendency -- Deriving a Weighted Mean Using the Frequency Distributions in a Set of Observations -- Measures of Dispersion 
505 8 |a Spatial Statistics: Measures for Describing Basic Characteristics of Spatial Data -- Spatial Measures of Central Tendency -- Spatial Measures of Dispersion -- Random Variables and Probability Distribution -- Random Variable -- Probability and Theoretical Data Distributions -- Concepts and Applications -- Binomial Distribution -- Poisson Distribution -- Normal Distribution -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Exploring Z-Score to Assess the Relative Position in Data Distributions Using R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 4. Engaging in Exploratory Data Analysis, Visualization, and Hypothesis Testing -- Learning Objectives -- Introduction -- Exploratory Data Analysis, Geovisualization, and Data Visualization Methods -- Data Visualization -- Geographic Visualization -- New Stunning Visualization Tools and Infographics -- Exploratory Approaches for Visualizing Spatial Datasets -- Visualizing Multidimensional Datasets: An Illustration Based on U.S. Educational Achievements Rates, 1970-2012 -- Hypothesis Testing, Confidence Intervals, and .p.-Values -- Computation -- Statistical Conclusion -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Generating Graphical Data Summaries -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 5. Understanding Spatial Statistical Relationships -- Learning Objectives -- Engaging in Correlation Analysis -- Ordinary Least Squares and Geographically Weighted Regression Methods -- Procedures in Developing a Spatial Regression Model -- Examining Relationships between Regression Variables 
505 8 |a Examining the Strength of Association and Direction of All Paired Variables Using a Scatterplot Matrix -- Fitting the Ordinary Least Squares Regression Model -- Primary Model -- Examining Variance Inflation Factor Results -- Reduced Model -- Best Model -- Examining Residual Changes in Ordinary Least Squares Regression Models -- Fitting the Geographically Weighted Regression Model -- Examining Residual Change and Effects of Predictor Variables on Local Areas -- Summary of Modeling Result -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 6. Engaging in Point Pattern Analysis -- Learning Objectives -- Introduction -- Rationale for Studying Point Patterns and Distributions -- Exploring Patterns, Distributions, and Trends Associated with Point Features -- Quadrat Count -- Nearest Neighbor Approach -- K-Function Approach -- Kernel Estimation Approach -- Constructing a Voronoi Map from Point Features -- Exploring Space-Time Patterns -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Explore Potential Path Area and Activity Space Concepts -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 7. Engaging in Areal Pattern Analysis Using Global and Local Statistics -- Learning Objectives -- Rationale for Studying Areal Patterns -- The Notion of Spatial Relationships -- Quantifying Spatial Autocorrelation Effects in Areal Patterns -- Join Count Statistics -- Interpreting the Join Count Statistics and Methodological Flaws -- Global Moran's I Coefficient of Spatial Autocorrelation -- Interpreting Moran's I and Methodological Flaws -- Global Geary's C Coefficient of Spatial Autocorrelation 
505 8 |a Interpreting Geary's C and Methodological Flaws -- Getis-Ord G Statistics -- Interpretation of Getis-Ord G and Methodological Flaws -- Local Moran's I -- Local G-Statistic -- Local Geary -- Using Scatterplots to Synthesize and Interpret Local Indicators of Spatial Association Statistics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Quiz -- Review and Study Questions -- Glossary of Key Terms -- References -- 8. Engaging in Geostatistical Analysis -- Learning Objectives -- Introduction -- Rationale for Using Geostatistics to Study Complex Spatial Patterns -- Basic Interpolation Equations -- Spatial Structure Functions for Regionalized Variables -- Kriging Method and Its Theoretical Framework -- Simple Kriging -- Ordinary Kriging -- Universal Kriging -- Indicator Kriging -- Key Points to Note about the Geostatistical Estimation Using Kriging -- Exploratory Data Analysis -- Spatial Prediction and Modeling -- Uncertainty Analysis -- Conditional Geostatistical Simulation -- Inverse Distance Weighting -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 9. Data Science: Understanding Computing Systems and Analytics for Big Data -- Learning Objectives -- Introduction to Data Science -- Rationale for a Big Geospatial Data Framework -- Data Management -- Data Warehousing -- Data Sources, Processing Tools, and the Extract-Transform-Load Process -- Data Integration and Storage -- Data-Mining Algorithms for Big Geospatial Data -- Tools, Algorithms, and Methods for Data Mining and Actionable Knowledge -- Business Intelligence, Spatial Online Analytical Processing, and Analytics -- Analytics and Strategies for Big Geospatial Data -- Spatiotemporal Data Analytics 
505 8 |a Classification Algorithms for Detecting Clusters in Big Geospatial Data -- Embedding Solutions/Algorithm with Topological Considerations -- Graph and Text Analytics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- Index 
650 4 |a Spatial analysis (Statistics) 
650 0 7 |a Datenanalyse  |0 (DE-588)4123037-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Räumliche Statistik  |0 (DE-588)4386767-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Geoinformationssystem  |0 (DE-588)4261642-6  |2 gnd  |9 rswk-swf 
650 0 7 |a R  |g Programm  |0 (DE-588)4705956-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Raumdaten  |0 (DE-588)4206012-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Geoinformationssystem  |0 (DE-588)4261642-6  |D s 
689 0 1 |a Raumdaten  |0 (DE-588)4206012-6  |D s 
689 0 2 |a Räumliche Statistik  |0 (DE-588)4386767-4  |D s 
689 0 3 |a Datenanalyse  |0 (DE-588)4123037-1  |D s 
689 0 4 |a R  |g Programm  |0 (DE-588)4705956-4  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |a Oyana, Tonny J.  |t Spatial Analysis with R  |d Milton : Taylor & Francis Group,c2020  |n Druck-Ausgabe, Hardcover  |z 978-0-367-86085-1 
912 |a ZDB-30-PQE 
943 1 |a oai:aleph.bib-bvb.de:BVB01-032844062 
966 e |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6317218  |l DE-91  |p ZDB-30-PQE  |q TUM_PDA_PQE_Kauf  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819311355182710784
any_adam_object
author Oyana, Tonny J.
author_GND (DE-588)1082383678
author_facet Oyana, Tonny J.
author_role aut
author_sort Oyana, Tonny J.
author_variant t j o tj tjo
building Verbundindex
bvnumber BV047441910
classification_rvk RB 10104
collection ZDB-30-PQE
contents Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- Author -- 1. Understanding the Context and Relevance of Spatial Analysis -- Learning Objectives -- Introduction -- From Data to Information, to Knowledge, and Wisdom -- Spatial Analysis Using a GIS Timeline -- Spatial Analysis in the Post-1990s Period -- Data Science, GIS, and Artificial Intelligence -- Geographic Data: Properties, Strengths, and Analytical Challenges -- Concept of Scale -- Concept of Spatial Dependency -- Concept of Spatial Proximity -- Modifiable Areal Unit Problem -- Concept of Spatial Autocorrelation -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Working with R -- Getting Started -- Working with Spatial Data -- Tips for Working with R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 2. Making Scientific Observations and Measurements in Spatial Analysis -- Learning Objectives -- Introduction -- Scales of Measurement -- Nominal Scale -- Ordinal Scale -- Interval Scale -- Ratio Scale -- Two Main Approaches for Data Collection That Involve Deductive and Inductive Reasoning -- Population and Sample -- Spatial Sampling -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Step I. View Data Structure -- Step II. Basic Data Summaries -- Step III. Exploring the Spatial Data -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 3. Using Statistical Measures to Analyze Data Distributions -- Learning Objectives -- Introduction -- Descriptive Statistics -- Measures of Central Tendency -- Deriving a Weighted Mean Using the Frequency Distributions in a Set of Observations -- Measures of Dispersion
Spatial Statistics: Measures for Describing Basic Characteristics of Spatial Data -- Spatial Measures of Central Tendency -- Spatial Measures of Dispersion -- Random Variables and Probability Distribution -- Random Variable -- Probability and Theoretical Data Distributions -- Concepts and Applications -- Binomial Distribution -- Poisson Distribution -- Normal Distribution -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Exploring Z-Score to Assess the Relative Position in Data Distributions Using R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 4. Engaging in Exploratory Data Analysis, Visualization, and Hypothesis Testing -- Learning Objectives -- Introduction -- Exploratory Data Analysis, Geovisualization, and Data Visualization Methods -- Data Visualization -- Geographic Visualization -- New Stunning Visualization Tools and Infographics -- Exploratory Approaches for Visualizing Spatial Datasets -- Visualizing Multidimensional Datasets: An Illustration Based on U.S. Educational Achievements Rates, 1970-2012 -- Hypothesis Testing, Confidence Intervals, and .p.-Values -- Computation -- Statistical Conclusion -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Generating Graphical Data Summaries -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 5. Understanding Spatial Statistical Relationships -- Learning Objectives -- Engaging in Correlation Analysis -- Ordinary Least Squares and Geographically Weighted Regression Methods -- Procedures in Developing a Spatial Regression Model -- Examining Relationships between Regression Variables
Examining the Strength of Association and Direction of All Paired Variables Using a Scatterplot Matrix -- Fitting the Ordinary Least Squares Regression Model -- Primary Model -- Examining Variance Inflation Factor Results -- Reduced Model -- Best Model -- Examining Residual Changes in Ordinary Least Squares Regression Models -- Fitting the Geographically Weighted Regression Model -- Examining Residual Change and Effects of Predictor Variables on Local Areas -- Summary of Modeling Result -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 6. Engaging in Point Pattern Analysis -- Learning Objectives -- Introduction -- Rationale for Studying Point Patterns and Distributions -- Exploring Patterns, Distributions, and Trends Associated with Point Features -- Quadrat Count -- Nearest Neighbor Approach -- K-Function Approach -- Kernel Estimation Approach -- Constructing a Voronoi Map from Point Features -- Exploring Space-Time Patterns -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Explore Potential Path Area and Activity Space Concepts -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 7. Engaging in Areal Pattern Analysis Using Global and Local Statistics -- Learning Objectives -- Rationale for Studying Areal Patterns -- The Notion of Spatial Relationships -- Quantifying Spatial Autocorrelation Effects in Areal Patterns -- Join Count Statistics -- Interpreting the Join Count Statistics and Methodological Flaws -- Global Moran's I Coefficient of Spatial Autocorrelation -- Interpreting Moran's I and Methodological Flaws -- Global Geary's C Coefficient of Spatial Autocorrelation
Interpreting Geary's C and Methodological Flaws -- Getis-Ord G Statistics -- Interpretation of Getis-Ord G and Methodological Flaws -- Local Moran's I -- Local G-Statistic -- Local Geary -- Using Scatterplots to Synthesize and Interpret Local Indicators of Spatial Association Statistics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Quiz -- Review and Study Questions -- Glossary of Key Terms -- References -- 8. Engaging in Geostatistical Analysis -- Learning Objectives -- Introduction -- Rationale for Using Geostatistics to Study Complex Spatial Patterns -- Basic Interpolation Equations -- Spatial Structure Functions for Regionalized Variables -- Kriging Method and Its Theoretical Framework -- Simple Kriging -- Ordinary Kriging -- Universal Kriging -- Indicator Kriging -- Key Points to Note about the Geostatistical Estimation Using Kriging -- Exploratory Data Analysis -- Spatial Prediction and Modeling -- Uncertainty Analysis -- Conditional Geostatistical Simulation -- Inverse Distance Weighting -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 9. Data Science: Understanding Computing Systems and Analytics for Big Data -- Learning Objectives -- Introduction to Data Science -- Rationale for a Big Geospatial Data Framework -- Data Management -- Data Warehousing -- Data Sources, Processing Tools, and the Extract-Transform-Load Process -- Data Integration and Storage -- Data-Mining Algorithms for Big Geospatial Data -- Tools, Algorithms, and Methods for Data Mining and Actionable Knowledge -- Business Intelligence, Spatial Online Analytical Processing, and Analytics -- Analytics and Strategies for Big Geospatial Data -- Spatiotemporal Data Analytics
Classification Algorithms for Detecting Clusters in Big Geospatial Data -- Embedding Solutions/Algorithm with Topological Considerations -- Graph and Text Analytics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- Index
ctrlnum (ZDB-30-PQE)EBC6317218
(ZDB-30-PAD)EBC6317218
(ZDB-89-EBL)EBL6317218
(OCoLC)1190857072
(DE-599)BVBBV047441910
dewey-full 519.5
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.5
dewey-search 519.5
dewey-sort 3519.5
dewey-tens 510 - Mathematics
discipline Mathematik
Geographie
edition Second edition
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09995nam a2200601zc 4500</leader><controlfield tag="001">BV047441910</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000173451</subfield><subfield code="9">978-1-00-017345-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003021643</subfield><subfield code="9">978-1-003-02164-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6317218</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6317218</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6317218</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1190857072</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047441910</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10104</subfield><subfield code="0">(DE-625)142220:12617</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oyana, Tonny J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1082383678</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatial analysis with R</subfield><subfield code="b">statistics, visualization, and computational methods</subfield><subfield code="c">Tonny J. Oyana</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 333 Seiten)</subfield><subfield code="b">Illustrationen, Karten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- Author -- 1. Understanding the Context and Relevance of Spatial Analysis -- Learning Objectives -- Introduction -- From Data to Information, to Knowledge, and Wisdom -- Spatial Analysis Using a GIS Timeline -- Spatial Analysis in the Post-1990s Period -- Data Science, GIS, and Artificial Intelligence -- Geographic Data: Properties, Strengths, and Analytical Challenges -- Concept of Scale -- Concept of Spatial Dependency -- Concept of Spatial Proximity -- Modifiable Areal Unit Problem -- Concept of Spatial Autocorrelation -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Working with R -- Getting Started -- Working with Spatial Data -- Tips for Working with R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 2. Making Scientific Observations and Measurements in Spatial Analysis -- Learning Objectives -- Introduction -- Scales of Measurement -- Nominal Scale -- Ordinal Scale -- Interval Scale -- Ratio Scale -- Two Main Approaches for Data Collection That Involve Deductive and Inductive Reasoning -- Population and Sample -- Spatial Sampling -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Step I. View Data Structure -- Step II. Basic Data Summaries -- Step III. Exploring the Spatial Data -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 3. Using Statistical Measures to Analyze Data Distributions -- Learning Objectives -- Introduction -- Descriptive Statistics -- Measures of Central Tendency -- Deriving a Weighted Mean Using the Frequency Distributions in a Set of Observations -- Measures of Dispersion</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Spatial Statistics: Measures for Describing Basic Characteristics of Spatial Data -- Spatial Measures of Central Tendency -- Spatial Measures of Dispersion -- Random Variables and Probability Distribution -- Random Variable -- Probability and Theoretical Data Distributions -- Concepts and Applications -- Binomial Distribution -- Poisson Distribution -- Normal Distribution -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Exploring Z-Score to Assess the Relative Position in Data Distributions Using R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 4. Engaging in Exploratory Data Analysis, Visualization, and Hypothesis Testing -- Learning Objectives -- Introduction -- Exploratory Data Analysis, Geovisualization, and Data Visualization Methods -- Data Visualization -- Geographic Visualization -- New Stunning Visualization Tools and Infographics -- Exploratory Approaches for Visualizing Spatial Datasets -- Visualizing Multidimensional Datasets: An Illustration Based on U.S. Educational Achievements Rates, 1970-2012 -- Hypothesis Testing, Confidence Intervals, and .p.-Values -- Computation -- Statistical Conclusion -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Generating Graphical Data Summaries -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 5. Understanding Spatial Statistical Relationships -- Learning Objectives -- Engaging in Correlation Analysis -- Ordinary Least Squares and Geographically Weighted Regression Methods -- Procedures in Developing a Spatial Regression Model -- Examining Relationships between Regression Variables</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Examining the Strength of Association and Direction of All Paired Variables Using a Scatterplot Matrix -- Fitting the Ordinary Least Squares Regression Model -- Primary Model -- Examining Variance Inflation Factor Results -- Reduced Model -- Best Model -- Examining Residual Changes in Ordinary Least Squares Regression Models -- Fitting the Geographically Weighted Regression Model -- Examining Residual Change and Effects of Predictor Variables on Local Areas -- Summary of Modeling Result -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 6. Engaging in Point Pattern Analysis -- Learning Objectives -- Introduction -- Rationale for Studying Point Patterns and Distributions -- Exploring Patterns, Distributions, and Trends Associated with Point Features -- Quadrat Count -- Nearest Neighbor Approach -- K-Function Approach -- Kernel Estimation Approach -- Constructing a Voronoi Map from Point Features -- Exploring Space-Time Patterns -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Explore Potential Path Area and Activity Space Concepts -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 7. Engaging in Areal Pattern Analysis Using Global and Local Statistics -- Learning Objectives -- Rationale for Studying Areal Patterns -- The Notion of Spatial Relationships -- Quantifying Spatial Autocorrelation Effects in Areal Patterns -- Join Count Statistics -- Interpreting the Join Count Statistics and Methodological Flaws -- Global Moran's I Coefficient of Spatial Autocorrelation -- Interpreting Moran's I and Methodological Flaws -- Global Geary's C Coefficient of Spatial Autocorrelation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Interpreting Geary's C and Methodological Flaws -- Getis-Ord G Statistics -- Interpretation of Getis-Ord G and Methodological Flaws -- Local Moran's I -- Local G-Statistic -- Local Geary -- Using Scatterplots to Synthesize and Interpret Local Indicators of Spatial Association Statistics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Quiz -- Review and Study Questions -- Glossary of Key Terms -- References -- 8. Engaging in Geostatistical Analysis -- Learning Objectives -- Introduction -- Rationale for Using Geostatistics to Study Complex Spatial Patterns -- Basic Interpolation Equations -- Spatial Structure Functions for Regionalized Variables -- Kriging Method and Its Theoretical Framework -- Simple Kriging -- Ordinary Kriging -- Universal Kriging -- Indicator Kriging -- Key Points to Note about the Geostatistical Estimation Using Kriging -- Exploratory Data Analysis -- Spatial Prediction and Modeling -- Uncertainty Analysis -- Conditional Geostatistical Simulation -- Inverse Distance Weighting -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 9. Data Science: Understanding Computing Systems and Analytics for Big Data -- Learning Objectives -- Introduction to Data Science -- Rationale for a Big Geospatial Data Framework -- Data Management -- Data Warehousing -- Data Sources, Processing Tools, and the Extract-Transform-Load Process -- Data Integration and Storage -- Data-Mining Algorithms for Big Geospatial Data -- Tools, Algorithms, and Methods for Data Mining and Actionable Knowledge -- Business Intelligence, Spatial Online Analytical Processing, and Analytics -- Analytics and Strategies for Big Geospatial Data -- Spatiotemporal Data Analytics</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Classification Algorithms for Detecting Clusters in Big Geospatial Data -- Embedding Solutions/Algorithm with Topological Considerations -- Graph and Text Analytics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial analysis (Statistics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Räumliche Statistik</subfield><subfield code="0">(DE-588)4386767-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geoinformationssystem</subfield><subfield code="0">(DE-588)4261642-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Raumdaten</subfield><subfield code="0">(DE-588)4206012-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geoinformationssystem</subfield><subfield code="0">(DE-588)4261642-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Raumdaten</subfield><subfield code="0">(DE-588)4206012-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Räumliche Statistik</subfield><subfield code="0">(DE-588)4386767-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Oyana, Tonny J.</subfield><subfield code="t">Spatial Analysis with R</subfield><subfield code="d">Milton : Taylor &amp; Francis Group,c2020</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-367-86085-1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844062</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6317218</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV047441910
illustrated Illustrated
indexdate 2024-12-24T08:55:12Z
institution BVB
isbn 9781000173451
9781003021643
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032844062
oclc_num 1190857072
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (xix, 333 Seiten) Illustrationen, Karten
psigel ZDB-30-PQE
ZDB-30-PQE TUM_PDA_PQE_Kauf
publishDate 2021
publishDateSearch 2021
publishDateSort 2021
publisher CRC Press
record_format marc
spelling Oyana, Tonny J. Verfasser (DE-588)1082383678 aut
Spatial analysis with R statistics, visualization, and computational methods Tonny J. Oyana
Second edition
Boca Raton ; London ; New York CRC Press [2021]
© 2021
1 Online-Ressource (xix, 333 Seiten) Illustrationen, Karten
txt rdacontent
c rdamedia
cr rdacarrier
Description based on publisher supplied metadata and other sources
Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- Author -- 1. Understanding the Context and Relevance of Spatial Analysis -- Learning Objectives -- Introduction -- From Data to Information, to Knowledge, and Wisdom -- Spatial Analysis Using a GIS Timeline -- Spatial Analysis in the Post-1990s Period -- Data Science, GIS, and Artificial Intelligence -- Geographic Data: Properties, Strengths, and Analytical Challenges -- Concept of Scale -- Concept of Spatial Dependency -- Concept of Spatial Proximity -- Modifiable Areal Unit Problem -- Concept of Spatial Autocorrelation -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Working with R -- Getting Started -- Working with Spatial Data -- Tips for Working with R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 2. Making Scientific Observations and Measurements in Spatial Analysis -- Learning Objectives -- Introduction -- Scales of Measurement -- Nominal Scale -- Ordinal Scale -- Interval Scale -- Ratio Scale -- Two Main Approaches for Data Collection That Involve Deductive and Inductive Reasoning -- Population and Sample -- Spatial Sampling -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Step I. View Data Structure -- Step II. Basic Data Summaries -- Step III. Exploring the Spatial Data -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 3. Using Statistical Measures to Analyze Data Distributions -- Learning Objectives -- Introduction -- Descriptive Statistics -- Measures of Central Tendency -- Deriving a Weighted Mean Using the Frequency Distributions in a Set of Observations -- Measures of Dispersion
Spatial Statistics: Measures for Describing Basic Characteristics of Spatial Data -- Spatial Measures of Central Tendency -- Spatial Measures of Dispersion -- Random Variables and Probability Distribution -- Random Variable -- Probability and Theoretical Data Distributions -- Concepts and Applications -- Binomial Distribution -- Poisson Distribution -- Normal Distribution -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Exploring Z-Score to Assess the Relative Position in Data Distributions Using R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 4. Engaging in Exploratory Data Analysis, Visualization, and Hypothesis Testing -- Learning Objectives -- Introduction -- Exploratory Data Analysis, Geovisualization, and Data Visualization Methods -- Data Visualization -- Geographic Visualization -- New Stunning Visualization Tools and Infographics -- Exploratory Approaches for Visualizing Spatial Datasets -- Visualizing Multidimensional Datasets: An Illustration Based on U.S. Educational Achievements Rates, 1970-2012 -- Hypothesis Testing, Confidence Intervals, and .p.-Values -- Computation -- Statistical Conclusion -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Generating Graphical Data Summaries -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 5. Understanding Spatial Statistical Relationships -- Learning Objectives -- Engaging in Correlation Analysis -- Ordinary Least Squares and Geographically Weighted Regression Methods -- Procedures in Developing a Spatial Regression Model -- Examining Relationships between Regression Variables
Examining the Strength of Association and Direction of All Paired Variables Using a Scatterplot Matrix -- Fitting the Ordinary Least Squares Regression Model -- Primary Model -- Examining Variance Inflation Factor Results -- Reduced Model -- Best Model -- Examining Residual Changes in Ordinary Least Squares Regression Models -- Fitting the Geographically Weighted Regression Model -- Examining Residual Change and Effects of Predictor Variables on Local Areas -- Summary of Modeling Result -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 6. Engaging in Point Pattern Analysis -- Learning Objectives -- Introduction -- Rationale for Studying Point Patterns and Distributions -- Exploring Patterns, Distributions, and Trends Associated with Point Features -- Quadrat Count -- Nearest Neighbor Approach -- K-Function Approach -- Kernel Estimation Approach -- Constructing a Voronoi Map from Point Features -- Exploring Space-Time Patterns -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Explore Potential Path Area and Activity Space Concepts -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 7. Engaging in Areal Pattern Analysis Using Global and Local Statistics -- Learning Objectives -- Rationale for Studying Areal Patterns -- The Notion of Spatial Relationships -- Quantifying Spatial Autocorrelation Effects in Areal Patterns -- Join Count Statistics -- Interpreting the Join Count Statistics and Methodological Flaws -- Global Moran's I Coefficient of Spatial Autocorrelation -- Interpreting Moran's I and Methodological Flaws -- Global Geary's C Coefficient of Spatial Autocorrelation
Interpreting Geary's C and Methodological Flaws -- Getis-Ord G Statistics -- Interpretation of Getis-Ord G and Methodological Flaws -- Local Moran's I -- Local G-Statistic -- Local Geary -- Using Scatterplots to Synthesize and Interpret Local Indicators of Spatial Association Statistics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Quiz -- Review and Study Questions -- Glossary of Key Terms -- References -- 8. Engaging in Geostatistical Analysis -- Learning Objectives -- Introduction -- Rationale for Using Geostatistics to Study Complex Spatial Patterns -- Basic Interpolation Equations -- Spatial Structure Functions for Regionalized Variables -- Kriging Method and Its Theoretical Framework -- Simple Kriging -- Ordinary Kriging -- Universal Kriging -- Indicator Kriging -- Key Points to Note about the Geostatistical Estimation Using Kriging -- Exploratory Data Analysis -- Spatial Prediction and Modeling -- Uncertainty Analysis -- Conditional Geostatistical Simulation -- Inverse Distance Weighting -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 9. Data Science: Understanding Computing Systems and Analytics for Big Data -- Learning Objectives -- Introduction to Data Science -- Rationale for a Big Geospatial Data Framework -- Data Management -- Data Warehousing -- Data Sources, Processing Tools, and the Extract-Transform-Load Process -- Data Integration and Storage -- Data-Mining Algorithms for Big Geospatial Data -- Tools, Algorithms, and Methods for Data Mining and Actionable Knowledge -- Business Intelligence, Spatial Online Analytical Processing, and Analytics -- Analytics and Strategies for Big Geospatial Data -- Spatiotemporal Data Analytics
Classification Algorithms for Detecting Clusters in Big Geospatial Data -- Embedding Solutions/Algorithm with Topological Considerations -- Graph and Text Analytics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- Index
Spatial analysis (Statistics)
Datenanalyse (DE-588)4123037-1 gnd rswk-swf
Räumliche Statistik (DE-588)4386767-4 gnd rswk-swf
Geoinformationssystem (DE-588)4261642-6 gnd rswk-swf
R Programm (DE-588)4705956-4 gnd rswk-swf
Raumdaten (DE-588)4206012-6 gnd rswk-swf
Geoinformationssystem (DE-588)4261642-6 s
Raumdaten (DE-588)4206012-6 s
Räumliche Statistik (DE-588)4386767-4 s
Datenanalyse (DE-588)4123037-1 s
R Programm (DE-588)4705956-4 s
DE-604
Erscheint auch als Oyana, Tonny J. Spatial Analysis with R Milton : Taylor & Francis Group,c2020 Druck-Ausgabe, Hardcover 978-0-367-86085-1
spellingShingle Oyana, Tonny J.
Spatial analysis with R statistics, visualization, and computational methods
Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- Author -- 1. Understanding the Context and Relevance of Spatial Analysis -- Learning Objectives -- Introduction -- From Data to Information, to Knowledge, and Wisdom -- Spatial Analysis Using a GIS Timeline -- Spatial Analysis in the Post-1990s Period -- Data Science, GIS, and Artificial Intelligence -- Geographic Data: Properties, Strengths, and Analytical Challenges -- Concept of Scale -- Concept of Spatial Dependency -- Concept of Spatial Proximity -- Modifiable Areal Unit Problem -- Concept of Spatial Autocorrelation -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Working with R -- Getting Started -- Working with Spatial Data -- Tips for Working with R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 2. Making Scientific Observations and Measurements in Spatial Analysis -- Learning Objectives -- Introduction -- Scales of Measurement -- Nominal Scale -- Ordinal Scale -- Interval Scale -- Ratio Scale -- Two Main Approaches for Data Collection That Involve Deductive and Inductive Reasoning -- Population and Sample -- Spatial Sampling -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Step I. View Data Structure -- Step II. Basic Data Summaries -- Step III. Exploring the Spatial Data -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 3. Using Statistical Measures to Analyze Data Distributions -- Learning Objectives -- Introduction -- Descriptive Statistics -- Measures of Central Tendency -- Deriving a Weighted Mean Using the Frequency Distributions in a Set of Observations -- Measures of Dispersion
Spatial Statistics: Measures for Describing Basic Characteristics of Spatial Data -- Spatial Measures of Central Tendency -- Spatial Measures of Dispersion -- Random Variables and Probability Distribution -- Random Variable -- Probability and Theoretical Data Distributions -- Concepts and Applications -- Binomial Distribution -- Poisson Distribution -- Normal Distribution -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Exploring Z-Score to Assess the Relative Position in Data Distributions Using R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 4. Engaging in Exploratory Data Analysis, Visualization, and Hypothesis Testing -- Learning Objectives -- Introduction -- Exploratory Data Analysis, Geovisualization, and Data Visualization Methods -- Data Visualization -- Geographic Visualization -- New Stunning Visualization Tools and Infographics -- Exploratory Approaches for Visualizing Spatial Datasets -- Visualizing Multidimensional Datasets: An Illustration Based on U.S. Educational Achievements Rates, 1970-2012 -- Hypothesis Testing, Confidence Intervals, and .p.-Values -- Computation -- Statistical Conclusion -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Generating Graphical Data Summaries -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 5. Understanding Spatial Statistical Relationships -- Learning Objectives -- Engaging in Correlation Analysis -- Ordinary Least Squares and Geographically Weighted Regression Methods -- Procedures in Developing a Spatial Regression Model -- Examining Relationships between Regression Variables
Examining the Strength of Association and Direction of All Paired Variables Using a Scatterplot Matrix -- Fitting the Ordinary Least Squares Regression Model -- Primary Model -- Examining Variance Inflation Factor Results -- Reduced Model -- Best Model -- Examining Residual Changes in Ordinary Least Squares Regression Models -- Fitting the Geographically Weighted Regression Model -- Examining Residual Change and Effects of Predictor Variables on Local Areas -- Summary of Modeling Result -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 6. Engaging in Point Pattern Analysis -- Learning Objectives -- Introduction -- Rationale for Studying Point Patterns and Distributions -- Exploring Patterns, Distributions, and Trends Associated with Point Features -- Quadrat Count -- Nearest Neighbor Approach -- K-Function Approach -- Kernel Estimation Approach -- Constructing a Voronoi Map from Point Features -- Exploring Space-Time Patterns -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Explore Potential Path Area and Activity Space Concepts -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 7. Engaging in Areal Pattern Analysis Using Global and Local Statistics -- Learning Objectives -- Rationale for Studying Areal Patterns -- The Notion of Spatial Relationships -- Quantifying Spatial Autocorrelation Effects in Areal Patterns -- Join Count Statistics -- Interpreting the Join Count Statistics and Methodological Flaws -- Global Moran's I Coefficient of Spatial Autocorrelation -- Interpreting Moran's I and Methodological Flaws -- Global Geary's C Coefficient of Spatial Autocorrelation
Interpreting Geary's C and Methodological Flaws -- Getis-Ord G Statistics -- Interpretation of Getis-Ord G and Methodological Flaws -- Local Moran's I -- Local G-Statistic -- Local Geary -- Using Scatterplots to Synthesize and Interpret Local Indicators of Spatial Association Statistics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Quiz -- Review and Study Questions -- Glossary of Key Terms -- References -- 8. Engaging in Geostatistical Analysis -- Learning Objectives -- Introduction -- Rationale for Using Geostatistics to Study Complex Spatial Patterns -- Basic Interpolation Equations -- Spatial Structure Functions for Regionalized Variables -- Kriging Method and Its Theoretical Framework -- Simple Kriging -- Ordinary Kriging -- Universal Kriging -- Indicator Kriging -- Key Points to Note about the Geostatistical Estimation Using Kriging -- Exploratory Data Analysis -- Spatial Prediction and Modeling -- Uncertainty Analysis -- Conditional Geostatistical Simulation -- Inverse Distance Weighting -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 9. Data Science: Understanding Computing Systems and Analytics for Big Data -- Learning Objectives -- Introduction to Data Science -- Rationale for a Big Geospatial Data Framework -- Data Management -- Data Warehousing -- Data Sources, Processing Tools, and the Extract-Transform-Load Process -- Data Integration and Storage -- Data-Mining Algorithms for Big Geospatial Data -- Tools, Algorithms, and Methods for Data Mining and Actionable Knowledge -- Business Intelligence, Spatial Online Analytical Processing, and Analytics -- Analytics and Strategies for Big Geospatial Data -- Spatiotemporal Data Analytics
Classification Algorithms for Detecting Clusters in Big Geospatial Data -- Embedding Solutions/Algorithm with Topological Considerations -- Graph and Text Analytics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- Index
Spatial analysis (Statistics)
Datenanalyse (DE-588)4123037-1 gnd
Räumliche Statistik (DE-588)4386767-4 gnd
Geoinformationssystem (DE-588)4261642-6 gnd
R Programm (DE-588)4705956-4 gnd
Raumdaten (DE-588)4206012-6 gnd
subject_GND (DE-588)4123037-1
(DE-588)4386767-4
(DE-588)4261642-6
(DE-588)4705956-4
(DE-588)4206012-6
title Spatial analysis with R statistics, visualization, and computational methods
title_auth Spatial analysis with R statistics, visualization, and computational methods
title_exact_search Spatial analysis with R statistics, visualization, and computational methods
title_full Spatial analysis with R statistics, visualization, and computational methods Tonny J. Oyana
title_fullStr Spatial analysis with R statistics, visualization, and computational methods Tonny J. Oyana
title_full_unstemmed Spatial analysis with R statistics, visualization, and computational methods Tonny J. Oyana
title_short Spatial analysis with R
title_sort spatial analysis with r statistics visualization and computational methods
title_sub statistics, visualization, and computational methods
topic Spatial analysis (Statistics)
Datenanalyse (DE-588)4123037-1 gnd
Räumliche Statistik (DE-588)4386767-4 gnd
Geoinformationssystem (DE-588)4261642-6 gnd
R Programm (DE-588)4705956-4 gnd
Raumdaten (DE-588)4206012-6 gnd
topic_facet Spatial analysis (Statistics)
Datenanalyse
Räumliche Statistik
Geoinformationssystem
R Programm
Raumdaten
work_keys_str_mv AT oyanatonnyj spatialanalysiswithrstatisticsvisualizationandcomputationalmethods