Precision metal additive manufacturing

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Leach, Richard (HerausgeberIn), Carmignato, Simone (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boca Raton ; London ; New York CRC Press, Taylor & Francis Group 2021
Ausgabe:First edition
Schlagworte:
Online-Zugang:TUM01
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV047441810
003 DE-604
005 20230831
007 cr|uuu---uuuuu
008 210827s2021 |||| o||u| ||||||eng d
020 |a 9780429791284  |9 978-0-429-79128-4 
020 |a 9780429436543  |9 978-0-429-43654-3 
035 |a (ZDB-30-PQE)EBC6272924 
035 |a (ZDB-30-PAD)EBC6272924 
035 |a (ZDB-89-EBL)EBL6272924 
035 |a (OCoLC)1181834117 
035 |a (DE-599)BVBBV047441810 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-91 
082 0 |a 671 
084 |a ZM 9050  |0 (DE-625)157213:  |2 rvk 
084 |a FER 786  |2 stub 
245 1 0 |a Precision metal additive manufacturing  |c edited by Richard Leach and Simone Carmignato 
250 |a First edition 
264 1 |a Boca Raton ; London ; New York  |b CRC Press, Taylor & Francis Group  |c 2021 
264 4 |c © 2021 
300 |a 1 Online-Ressource (xiv, 404 Seiten)  |b Illustrationen, Diagramme 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Description based on publisher supplied metadata and other sources 
505 8 |a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Acknowledgements -- Editors -- Contributors -- Chapter 1 Introduction to Precision Metal Additive Manufacturing -- 1.1 Introduction to Additive Manufacturing -- 1.2 Basic Definitions -- 1.2.1 General Terms -- 1.2.2 Process Categories -- 1.2.3 Other Terms -- 1.3 Towards Precision Additive Manufacturing -- References -- Chapter 2 Topology Optimisation Techniques -- 2.1 Introduction -- 2.2 Topology Optimisation -- 2.2.1 Density-Based TO Method -- 2.2.1.1 Problem Formulation -- 2.2.1.2 Sensitivity Analysis -- 2.2.1.3 Filtering Techniques -- 2.2.1.4 Solution Approaches -- 2.2.1.5 Application Domains -- 2.3 Topology Optimisation for Precision Metal AM -- 2.3.1 TO Methods for Avoiding Overhangs in Precision AM Parts -- 2.3.1.1 Two-Dimensional Overhang Control -- 2.3.1.2 3D Overhang Control -- 2.3.1.3 Support Inclusion -- 2.3.2 TO Methods for Preventing Overheating in Precision AM Parts -- 2.3.3 Towards TO Methods for Avoiding Distortion in Precision AM Parts -- 2.4 Challenges and Outlook -- References -- Chapter 3 Development of Precision Additive Manufacturing Processes -- 3.1 Introduction -- 3.2 State of the Art and Insight into Precision Process Development -- 3.3 Setting Priorities -- 3.4 Significant Process Parameters -- 3.4.1 Laser-Related Process Parameters -- 3.4.2 Scan-Related Process Parameters -- 3.4.3 Powder-Related Process Parameters -- 3.4.4 Build Chamber-Related Parameters -- 3.4.5 Combined Processing Parameters -- 3.5 Additive Manufacturing Performance Indicators -- 3.5.1 Mechanical Properties -- 3.5.2 Dimensional Accuracy -- 3.5.3 Surface Texture -- 3.5.4 Part Density -- 3.5.5 Total Build Time -- 3.5.6 Energy Consumption -- 3.5.7 System-Wide Performance Indicators -- 3.6 Data-Driven Process Improvement -- 3.6.1 Design of Experiments 
505 8 |a 3.6.2 Modelling of Process Performance (Quantifying Input/Output Process Relationships) -- 3.6.2.1 Regression and Statistical Analysis -- 3.6.2.2 Artificial Neural Network Modelling -- 3.6.3 Process Optimisation -- 3.7 Precision Processes in the Domain of Industry 4.0 -- 3.7.1 Real-Time Monitoring of AM Processes -- 3.7.2 Artificial Intelligence and Decision-Making Systems for Digital Quality Control -- 3.8 Future Perspectives for Precision AM Processes -- 3.9 Conclusions -- Acknowledgements -- References -- Chapter 4 Modelling Techniques to Enhance Precision in Metal Additive Manufacturing -- 4.1 Introduction -- 4.2 Demystifying AM through Simulations -- 4.2.1 The Physics of Laser Powder Bed Fusion -- 4.2.2 Challenges of Length and Time Scales -- 4.3 Warpage and Distortion Predictions by Macro-Scale Modelling of AM -- 4.3.1 Understanding Thermal History, Residual Stresses and Distortions -- 4.3.2 Goals and Challenges in Macro-Scale Modelling of AM Parts -- 4.3.3 Full-Scale, Reduced-Order and Effective Models -- 4.4 Tracking Powders, Pores and Melt Pools during AM through Meso-Scale Models -- 4.4.1 Powder Bed Formation and Representation -- 4.4.2 Simulating Laser-Material Interactions -- 4.4.3 Melt-Pool Dynamics in a Powder Bed -- 4.4.4 Evolution of Porosity during AM -- 4.4.5 Surfaces and Solidification during AM -- 4.5 Microstructure Simulations in Precision AM -- 4.5.1 Understanding the Metallurgical Needs -- 4.5.2 Metallurgical Modelling Techniques -- 4.5.3 Revisiting Solidification during AM from a Metallurgical Perspective -- 4.5.4 Need for Heat-Treatment as Post-Process -- 4.6 Data-Driven Modelling for Process Windows -- 4.6.1 Data-Based Models -- 4.6.2 Digital and Physical Design of Experiments -- 4.6.3 GIGO Approach to Model Calibration -- 4.7 Concluding Remarks and Future Outlook -- References -- Chapter 5 Secondary Finishing Operations 
505 8 |a 5.1 Introduction -- 5.2 Basic Definition of Secondary Finishing -- 5.2.1 What Is Considered to Be Secondary Finishing in This Chapter? -- 5.2.2 Not Included in the Scope of This Chapter -- 5.3 Why Do AM Surfaces Need to Be Finished? -- 5.3.1 Impact of Surface Topography on Function -- 5.3.1.1 Fatigue Applications -- 5.3.2 Examples of AM Surfaces -- 5.4 Specification Standards in Secondary Finishing -- 5.5 Challenges for Finishing Operations for AM Parts -- 5.5.1 Typical Operational Challenges for Metal AM Components Due to Surface Morphologies and Topographies -- 5.5.1.1 Challenges of Surface Topography -- 5.5.1.2 Supporting Material and Witness Marks -- 5.5.1.3 Distortion -- 5.5.2 Geometrical Challenges for Finishing Operations -- 5.5.3 AM Process Chain Challenges for Finishing Operations -- 5.5.4 Finishing Challenges for AM in Precision Applications -- 5.6 Available Secondary Finishing Processes -- 5.6.1 Conventional Machining Methods -- 5.6.2 Non-Conventional Machining Methods -- 5.6.3 Emerging Technologies Developed for AM -- 5.6.3.1 Chemical Processes -- 5.6.3.2 Hybrid Mass Finishing and Chemical -- 5.6.3.3 Hybrid Mass Finishing and Electropolishing -- 5.6.3.4 Electropolishing Developments -- 5.6.3.5 Mass Finishing Targeted at AM -- 5.7 What Processes Are Appropriate for AM? -- 5.7.1 Narrow Channels -- 5.7.2 Complex Internal Channels -- 5.7.3 Internal Cavities (Surface Connected) -- 5.7.4 Variable Cross-Section Internal Channels -- 5.7.5 Outer Lattice Surfaces -- 5.7.6 Inner Lattice Surfaces -- 5.7.7 Thin Features -- 5.7.8 Closed Internal Cavities -- 5.8 Other Considerations for Finishing Operations in AM -- 5.9 How to Impact AM Design for Finishing -- 5.10 Future Work -- 5.10.1 New Processes and Technologies in Development -- 5.10.1.1 Hybrid AFM -- 5.10.1.2 Laser Polishing -- 5.10.1.3 Automation and Modelling -- 5.10.2 Future of This Field 
505 8 |a 5.10.2.1 Internal Targeted Finishing -- 5.10.2.2 Hybrid Technologies -- 5.10.2.3 Design Processes -- 5.10.2.4 Specification Standards -- 5.10.2.5 Automation and Targeted Finishing -- References -- Chapter 6 Standards in Additive Manufacturing -- 6.1 Introduction -- 6.2 AM Standards Roadmaps -- 6.2.1 America Makes -- 6.2.2 Identified Gaps in the Roadmaps -- 6.3 AM Powder Feedstock Characterisation Standards -- 6.3.1 Feedstock Sampling Strategy -- 6.3.2 Particle Size Determination and Distribution -- 6.3.3 Morphology Characterisation Methods -- 6.3.4 Flow Characteristics -- 6.3.5 Thermal Characterisation -- 6.3.6 Density Determination -- 6.3.7 Chemical Composition -- 6.4 Processes -- 6.5 Part Verification -- 6.5.1 Tensile Properties -- 6.5.2 Compressive Properties -- 6.5.3 Hardness Measurement -- 6.5.4 Fatigue Measurement Methods -- 6.5.5 Fracture Toughness -- 6.5.6 Other Properties -- 6.6 Surface Standards -- 6.6.1 Profile and Areal Surfaces -- 6.7 Dimensional Standards -- 6.7.1 Performance Verification of Coordinate Measuring Machines -- 6.8 Non-Destructive Evaluation Standards -- 6.8.1 Current Standards -- 6.8.2 Welding Standards -- 6.8.3 Casting Standards -- 6.9 Future and Planned Standards Activities -- References -- Chapter 7 Cost Implications of Precision Additive Manufacturing -- 7.1 Introduction -- 7.2 A Primer in Manufacturing Cost Modelling -- 7.3 Developing an AM Costing Framework -- 7.4 Specifying a Simple Cost Model for Precision AM -- 7.5 A Brief Discussion of the Cost Model for Precision AM -- 7.5.1 Indirect Cost Rates -- 7.5.2 Capacity Utilisation -- 7.5.3 Integration with Other Operational Processes -- 7.5.4 Relationship between Failure Parameters and Costs of Inspection -- 7.6 Summary and Additional Perspectives -- References -- Chapter 8 Machine Performance Evaluation -- 8.1 Introduction -- 8.1.1 Definitions -- 8.1.2 Motivation 
505 8 |a 8.1.3 Background -- 8.1.4 Organisation of This Chapter -- 8.2 Three-Dimensional Test Artefacts -- 8.2.1 Key Contributions to 3D Test Artefacts -- 8.2.2 Strengths and Challenges of 3D Test Artefacts -- 8.2.3 Considerations for 3D Test Artefact Design -- 8.3 Component Testing -- 8.3.1 Key Contributions to Component Testing -- 8.3.2 Strengths and Challenges of Component Testing -- 8.3.3 General Principles of Component Testing -- 8.3.4 Z-Axis -- 8.3.5 Directed Energy Deposition Machine Error Motions -- 8.3.6 Powder Bed Fusion Machine Error Motions -- 8.3.7 Energy Beam Diagnostics -- 8.3.8 Non-Geometric Measurements -- 8.4 Two-Dimensional Test Artefacts -- 8.4.1 Strengths and Challenges of 2D Test Artefacts -- 8.4.2 Key Contributions to 2D Test Artefacts -- 8.4.3 Considerations for Designing a 2D Test Artefact -- 8.5 Areas for Future Research -- Disclaimer -- References -- Chapter 9 Non-Destructive Evaluation for Additive Manufacturing -- 9.1 Introduction -- 9.2 Typical Defects in AM -- 9.3 NDE Challenges in AM -- 9.4 NDE Methods - Advantages and Limitations -- 9.5 NDE Standardisation for AM -- 9.6 NDE for Qualification in AM -- 9.6.1 Post-Process Inspection -- 9.6.2 In-Process Inspection -- 9.7 NDE Reliability in AM -- 9.7.1 General Aspects of Experimental Pod Curves -- 9.7.1.1 General Aspects of PoD Curves Modelled through Experimental Data -- 9.7.1.2 Mathematical Simulation of PoD Curves -- 9.7.2 Estimation of Experimental PoD -- 9.8 Current PoD Performed in AM -- 9.9 Conclusions and Future Research -- Acknowledgements -- References -- Chapter 10 Post-Process Coordinate Metrology -- 10.1 Introduction -- 10.2 Basic Definitions -- 10.2.1 Surface and Coordinate Metrology Terms and Definitions -- 10.2.2 General Metrology Terms and Definitions -- 10.3 Basics for Coordinate Metrology -- 10.3.1 Coordinate Metrology System Configurations 
505 8 |a 10.3.2 Coordinate Metrology Software 
650 4 |a Metal-work 
650 0 7 |a Metall  |0 (DE-588)4038860-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Rapid Prototyping  |g Fertigung  |0 (DE-588)4389159-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Metallischer Werkstoff  |0 (DE-588)4136513-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Rapid Prototyping  |g Fertigung  |0 (DE-588)4389159-7  |D s 
689 0 1 |a Metall  |0 (DE-588)4038860-8  |D s 
689 0 2 |a Metallischer Werkstoff  |0 (DE-588)4136513-6  |D s 
689 0 |5 DE-604 
700 1 |a Leach, Richard  |0 (DE-588)103694798X  |4 edt 
700 1 |a Carmignato, Simone  |4 edt 
776 0 8 |i Erscheint auch als  |a Leach, Richard  |t Precision Metal Additive Manufacturing  |d Milton : Taylor & Francis Group,c2020  |n Druck-Ausgabe, Hardcover  |z 978-1-138-34771-7 
912 |a ZDB-30-PQE 
999 |a oai:aleph.bib-bvb.de:BVB01-032843962 
966 e |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6272924  |l TUM01  |p ZDB-30-PQE  |q TUM_PDA_PQE_Kauf  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

DE-BY-TUM_katkey 2577489
DE-BY-TUM_local_url https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6272924
Aggregator
_version_ 1816714734322319360
adam_txt
any_adam_object
any_adam_object_boolean
author2 Leach, Richard
Carmignato, Simone
author2_role edt
edt
author2_variant r l rl
s c sc
author_GND (DE-588)103694798X
author_facet Leach, Richard
Carmignato, Simone
building Verbundindex
bvnumber BV047441810
classification_rvk ZM 9050
classification_tum FER 786
collection ZDB-30-PQE
contents Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Acknowledgements -- Editors -- Contributors -- Chapter 1 Introduction to Precision Metal Additive Manufacturing -- 1.1 Introduction to Additive Manufacturing -- 1.2 Basic Definitions -- 1.2.1 General Terms -- 1.2.2 Process Categories -- 1.2.3 Other Terms -- 1.3 Towards Precision Additive Manufacturing -- References -- Chapter 2 Topology Optimisation Techniques -- 2.1 Introduction -- 2.2 Topology Optimisation -- 2.2.1 Density-Based TO Method -- 2.2.1.1 Problem Formulation -- 2.2.1.2 Sensitivity Analysis -- 2.2.1.3 Filtering Techniques -- 2.2.1.4 Solution Approaches -- 2.2.1.5 Application Domains -- 2.3 Topology Optimisation for Precision Metal AM -- 2.3.1 TO Methods for Avoiding Overhangs in Precision AM Parts -- 2.3.1.1 Two-Dimensional Overhang Control -- 2.3.1.2 3D Overhang Control -- 2.3.1.3 Support Inclusion -- 2.3.2 TO Methods for Preventing Overheating in Precision AM Parts -- 2.3.3 Towards TO Methods for Avoiding Distortion in Precision AM Parts -- 2.4 Challenges and Outlook -- References -- Chapter 3 Development of Precision Additive Manufacturing Processes -- 3.1 Introduction -- 3.2 State of the Art and Insight into Precision Process Development -- 3.3 Setting Priorities -- 3.4 Significant Process Parameters -- 3.4.1 Laser-Related Process Parameters -- 3.4.2 Scan-Related Process Parameters -- 3.4.3 Powder-Related Process Parameters -- 3.4.4 Build Chamber-Related Parameters -- 3.4.5 Combined Processing Parameters -- 3.5 Additive Manufacturing Performance Indicators -- 3.5.1 Mechanical Properties -- 3.5.2 Dimensional Accuracy -- 3.5.3 Surface Texture -- 3.5.4 Part Density -- 3.5.5 Total Build Time -- 3.5.6 Energy Consumption -- 3.5.7 System-Wide Performance Indicators -- 3.6 Data-Driven Process Improvement -- 3.6.1 Design of Experiments
3.6.2 Modelling of Process Performance (Quantifying Input/Output Process Relationships) -- 3.6.2.1 Regression and Statistical Analysis -- 3.6.2.2 Artificial Neural Network Modelling -- 3.6.3 Process Optimisation -- 3.7 Precision Processes in the Domain of Industry 4.0 -- 3.7.1 Real-Time Monitoring of AM Processes -- 3.7.2 Artificial Intelligence and Decision-Making Systems for Digital Quality Control -- 3.8 Future Perspectives for Precision AM Processes -- 3.9 Conclusions -- Acknowledgements -- References -- Chapter 4 Modelling Techniques to Enhance Precision in Metal Additive Manufacturing -- 4.1 Introduction -- 4.2 Demystifying AM through Simulations -- 4.2.1 The Physics of Laser Powder Bed Fusion -- 4.2.2 Challenges of Length and Time Scales -- 4.3 Warpage and Distortion Predictions by Macro-Scale Modelling of AM -- 4.3.1 Understanding Thermal History, Residual Stresses and Distortions -- 4.3.2 Goals and Challenges in Macro-Scale Modelling of AM Parts -- 4.3.3 Full-Scale, Reduced-Order and Effective Models -- 4.4 Tracking Powders, Pores and Melt Pools during AM through Meso-Scale Models -- 4.4.1 Powder Bed Formation and Representation -- 4.4.2 Simulating Laser-Material Interactions -- 4.4.3 Melt-Pool Dynamics in a Powder Bed -- 4.4.4 Evolution of Porosity during AM -- 4.4.5 Surfaces and Solidification during AM -- 4.5 Microstructure Simulations in Precision AM -- 4.5.1 Understanding the Metallurgical Needs -- 4.5.2 Metallurgical Modelling Techniques -- 4.5.3 Revisiting Solidification during AM from a Metallurgical Perspective -- 4.5.4 Need for Heat-Treatment as Post-Process -- 4.6 Data-Driven Modelling for Process Windows -- 4.6.1 Data-Based Models -- 4.6.2 Digital and Physical Design of Experiments -- 4.6.3 GIGO Approach to Model Calibration -- 4.7 Concluding Remarks and Future Outlook -- References -- Chapter 5 Secondary Finishing Operations
5.1 Introduction -- 5.2 Basic Definition of Secondary Finishing -- 5.2.1 What Is Considered to Be Secondary Finishing in This Chapter? -- 5.2.2 Not Included in the Scope of This Chapter -- 5.3 Why Do AM Surfaces Need to Be Finished? -- 5.3.1 Impact of Surface Topography on Function -- 5.3.1.1 Fatigue Applications -- 5.3.2 Examples of AM Surfaces -- 5.4 Specification Standards in Secondary Finishing -- 5.5 Challenges for Finishing Operations for AM Parts -- 5.5.1 Typical Operational Challenges for Metal AM Components Due to Surface Morphologies and Topographies -- 5.5.1.1 Challenges of Surface Topography -- 5.5.1.2 Supporting Material and Witness Marks -- 5.5.1.3 Distortion -- 5.5.2 Geometrical Challenges for Finishing Operations -- 5.5.3 AM Process Chain Challenges for Finishing Operations -- 5.5.4 Finishing Challenges for AM in Precision Applications -- 5.6 Available Secondary Finishing Processes -- 5.6.1 Conventional Machining Methods -- 5.6.2 Non-Conventional Machining Methods -- 5.6.3 Emerging Technologies Developed for AM -- 5.6.3.1 Chemical Processes -- 5.6.3.2 Hybrid Mass Finishing and Chemical -- 5.6.3.3 Hybrid Mass Finishing and Electropolishing -- 5.6.3.4 Electropolishing Developments -- 5.6.3.5 Mass Finishing Targeted at AM -- 5.7 What Processes Are Appropriate for AM? -- 5.7.1 Narrow Channels -- 5.7.2 Complex Internal Channels -- 5.7.3 Internal Cavities (Surface Connected) -- 5.7.4 Variable Cross-Section Internal Channels -- 5.7.5 Outer Lattice Surfaces -- 5.7.6 Inner Lattice Surfaces -- 5.7.7 Thin Features -- 5.7.8 Closed Internal Cavities -- 5.8 Other Considerations for Finishing Operations in AM -- 5.9 How to Impact AM Design for Finishing -- 5.10 Future Work -- 5.10.1 New Processes and Technologies in Development -- 5.10.1.1 Hybrid AFM -- 5.10.1.2 Laser Polishing -- 5.10.1.3 Automation and Modelling -- 5.10.2 Future of This Field
5.10.2.1 Internal Targeted Finishing -- 5.10.2.2 Hybrid Technologies -- 5.10.2.3 Design Processes -- 5.10.2.4 Specification Standards -- 5.10.2.5 Automation and Targeted Finishing -- References -- Chapter 6 Standards in Additive Manufacturing -- 6.1 Introduction -- 6.2 AM Standards Roadmaps -- 6.2.1 America Makes -- 6.2.2 Identified Gaps in the Roadmaps -- 6.3 AM Powder Feedstock Characterisation Standards -- 6.3.1 Feedstock Sampling Strategy -- 6.3.2 Particle Size Determination and Distribution -- 6.3.3 Morphology Characterisation Methods -- 6.3.4 Flow Characteristics -- 6.3.5 Thermal Characterisation -- 6.3.6 Density Determination -- 6.3.7 Chemical Composition -- 6.4 Processes -- 6.5 Part Verification -- 6.5.1 Tensile Properties -- 6.5.2 Compressive Properties -- 6.5.3 Hardness Measurement -- 6.5.4 Fatigue Measurement Methods -- 6.5.5 Fracture Toughness -- 6.5.6 Other Properties -- 6.6 Surface Standards -- 6.6.1 Profile and Areal Surfaces -- 6.7 Dimensional Standards -- 6.7.1 Performance Verification of Coordinate Measuring Machines -- 6.8 Non-Destructive Evaluation Standards -- 6.8.1 Current Standards -- 6.8.2 Welding Standards -- 6.8.3 Casting Standards -- 6.9 Future and Planned Standards Activities -- References -- Chapter 7 Cost Implications of Precision Additive Manufacturing -- 7.1 Introduction -- 7.2 A Primer in Manufacturing Cost Modelling -- 7.3 Developing an AM Costing Framework -- 7.4 Specifying a Simple Cost Model for Precision AM -- 7.5 A Brief Discussion of the Cost Model for Precision AM -- 7.5.1 Indirect Cost Rates -- 7.5.2 Capacity Utilisation -- 7.5.3 Integration with Other Operational Processes -- 7.5.4 Relationship between Failure Parameters and Costs of Inspection -- 7.6 Summary and Additional Perspectives -- References -- Chapter 8 Machine Performance Evaluation -- 8.1 Introduction -- 8.1.1 Definitions -- 8.1.2 Motivation
8.1.3 Background -- 8.1.4 Organisation of This Chapter -- 8.2 Three-Dimensional Test Artefacts -- 8.2.1 Key Contributions to 3D Test Artefacts -- 8.2.2 Strengths and Challenges of 3D Test Artefacts -- 8.2.3 Considerations for 3D Test Artefact Design -- 8.3 Component Testing -- 8.3.1 Key Contributions to Component Testing -- 8.3.2 Strengths and Challenges of Component Testing -- 8.3.3 General Principles of Component Testing -- 8.3.4 Z-Axis -- 8.3.5 Directed Energy Deposition Machine Error Motions -- 8.3.6 Powder Bed Fusion Machine Error Motions -- 8.3.7 Energy Beam Diagnostics -- 8.3.8 Non-Geometric Measurements -- 8.4 Two-Dimensional Test Artefacts -- 8.4.1 Strengths and Challenges of 2D Test Artefacts -- 8.4.2 Key Contributions to 2D Test Artefacts -- 8.4.3 Considerations for Designing a 2D Test Artefact -- 8.5 Areas for Future Research -- Disclaimer -- References -- Chapter 9 Non-Destructive Evaluation for Additive Manufacturing -- 9.1 Introduction -- 9.2 Typical Defects in AM -- 9.3 NDE Challenges in AM -- 9.4 NDE Methods - Advantages and Limitations -- 9.5 NDE Standardisation for AM -- 9.6 NDE for Qualification in AM -- 9.6.1 Post-Process Inspection -- 9.6.2 In-Process Inspection -- 9.7 NDE Reliability in AM -- 9.7.1 General Aspects of Experimental Pod Curves -- 9.7.1.1 General Aspects of PoD Curves Modelled through Experimental Data -- 9.7.1.2 Mathematical Simulation of PoD Curves -- 9.7.2 Estimation of Experimental PoD -- 9.8 Current PoD Performed in AM -- 9.9 Conclusions and Future Research -- Acknowledgements -- References -- Chapter 10 Post-Process Coordinate Metrology -- 10.1 Introduction -- 10.2 Basic Definitions -- 10.2.1 Surface and Coordinate Metrology Terms and Definitions -- 10.2.2 General Metrology Terms and Definitions -- 10.3 Basics for Coordinate Metrology -- 10.3.1 Coordinate Metrology System Configurations
10.3.2 Coordinate Metrology Software
ctrlnum (ZDB-30-PQE)EBC6272924
(ZDB-30-PAD)EBC6272924
(ZDB-89-EBL)EBL6272924
(OCoLC)1181834117
(DE-599)BVBBV047441810
dewey-full 671
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 671 - Metalworking & primary metal products
dewey-raw 671
dewey-search 671
dewey-sort 3671
dewey-tens 670 - Manufacturing
discipline Fertigungstechnik
Werkstoffwissenschaften / Fertigungstechnik
discipline_str_mv Fertigungstechnik
Werkstoffwissenschaften / Fertigungstechnik
edition First edition
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11548nmm a2200589zc 4500</leader><controlfield tag="001">BV047441810</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230831 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780429791284</subfield><subfield code="9">978-0-429-79128-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780429436543</subfield><subfield code="9">978-0-429-43654-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6272924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6272924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6272924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1181834117</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047441810</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">671</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 9050</subfield><subfield code="0">(DE-625)157213:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">FER 786</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Precision metal additive manufacturing</subfield><subfield code="c">edited by Richard Leach and Simone Carmignato</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press, Taylor &amp; Francis Group</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 404 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Acknowledgements -- Editors -- Contributors -- Chapter 1 Introduction to Precision Metal Additive Manufacturing -- 1.1 Introduction to Additive Manufacturing -- 1.2 Basic Definitions -- 1.2.1 General Terms -- 1.2.2 Process Categories -- 1.2.3 Other Terms -- 1.3 Towards Precision Additive Manufacturing -- References -- Chapter 2 Topology Optimisation Techniques -- 2.1 Introduction -- 2.2 Topology Optimisation -- 2.2.1 Density-Based TO Method -- 2.2.1.1 Problem Formulation -- 2.2.1.2 Sensitivity Analysis -- 2.2.1.3 Filtering Techniques -- 2.2.1.4 Solution Approaches -- 2.2.1.5 Application Domains -- 2.3 Topology Optimisation for Precision Metal AM -- 2.3.1 TO Methods for Avoiding Overhangs in Precision AM Parts -- 2.3.1.1 Two-Dimensional Overhang Control -- 2.3.1.2 3D Overhang Control -- 2.3.1.3 Support Inclusion -- 2.3.2 TO Methods for Preventing Overheating in Precision AM Parts -- 2.3.3 Towards TO Methods for Avoiding Distortion in Precision AM Parts -- 2.4 Challenges and Outlook -- References -- Chapter 3 Development of Precision Additive Manufacturing Processes -- 3.1 Introduction -- 3.2 State of the Art and Insight into Precision Process Development -- 3.3 Setting Priorities -- 3.4 Significant Process Parameters -- 3.4.1 Laser-Related Process Parameters -- 3.4.2 Scan-Related Process Parameters -- 3.4.3 Powder-Related Process Parameters -- 3.4.4 Build Chamber-Related Parameters -- 3.4.5 Combined Processing Parameters -- 3.5 Additive Manufacturing Performance Indicators -- 3.5.1 Mechanical Properties -- 3.5.2 Dimensional Accuracy -- 3.5.3 Surface Texture -- 3.5.4 Part Density -- 3.5.5 Total Build Time -- 3.5.6 Energy Consumption -- 3.5.7 System-Wide Performance Indicators -- 3.6 Data-Driven Process Improvement -- 3.6.1 Design of Experiments</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.6.2 Modelling of Process Performance (Quantifying Input/Output Process Relationships) -- 3.6.2.1 Regression and Statistical Analysis -- 3.6.2.2 Artificial Neural Network Modelling -- 3.6.3 Process Optimisation -- 3.7 Precision Processes in the Domain of Industry 4.0 -- 3.7.1 Real-Time Monitoring of AM Processes -- 3.7.2 Artificial Intelligence and Decision-Making Systems for Digital Quality Control -- 3.8 Future Perspectives for Precision AM Processes -- 3.9 Conclusions -- Acknowledgements -- References -- Chapter 4 Modelling Techniques to Enhance Precision in Metal Additive Manufacturing -- 4.1 Introduction -- 4.2 Demystifying AM through Simulations -- 4.2.1 The Physics of Laser Powder Bed Fusion -- 4.2.2 Challenges of Length and Time Scales -- 4.3 Warpage and Distortion Predictions by Macro-Scale Modelling of AM -- 4.3.1 Understanding Thermal History, Residual Stresses and Distortions -- 4.3.2 Goals and Challenges in Macro-Scale Modelling of AM Parts -- 4.3.3 Full-Scale, Reduced-Order and Effective Models -- 4.4 Tracking Powders, Pores and Melt Pools during AM through Meso-Scale Models -- 4.4.1 Powder Bed Formation and Representation -- 4.4.2 Simulating Laser-Material Interactions -- 4.4.3 Melt-Pool Dynamics in a Powder Bed -- 4.4.4 Evolution of Porosity during AM -- 4.4.5 Surfaces and Solidification during AM -- 4.5 Microstructure Simulations in Precision AM -- 4.5.1 Understanding the Metallurgical Needs -- 4.5.2 Metallurgical Modelling Techniques -- 4.5.3 Revisiting Solidification during AM from a Metallurgical Perspective -- 4.5.4 Need for Heat-Treatment as Post-Process -- 4.6 Data-Driven Modelling for Process Windows -- 4.6.1 Data-Based Models -- 4.6.2 Digital and Physical Design of Experiments -- 4.6.3 GIGO Approach to Model Calibration -- 4.7 Concluding Remarks and Future Outlook -- References -- Chapter 5 Secondary Finishing Operations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.1 Introduction -- 5.2 Basic Definition of Secondary Finishing -- 5.2.1 What Is Considered to Be Secondary Finishing in This Chapter? -- 5.2.2 Not Included in the Scope of This Chapter -- 5.3 Why Do AM Surfaces Need to Be Finished? -- 5.3.1 Impact of Surface Topography on Function -- 5.3.1.1 Fatigue Applications -- 5.3.2 Examples of AM Surfaces -- 5.4 Specification Standards in Secondary Finishing -- 5.5 Challenges for Finishing Operations for AM Parts -- 5.5.1 Typical Operational Challenges for Metal AM Components Due to Surface Morphologies and Topographies -- 5.5.1.1 Challenges of Surface Topography -- 5.5.1.2 Supporting Material and Witness Marks -- 5.5.1.3 Distortion -- 5.5.2 Geometrical Challenges for Finishing Operations -- 5.5.3 AM Process Chain Challenges for Finishing Operations -- 5.5.4 Finishing Challenges for AM in Precision Applications -- 5.6 Available Secondary Finishing Processes -- 5.6.1 Conventional Machining Methods -- 5.6.2 Non-Conventional Machining Methods -- 5.6.3 Emerging Technologies Developed for AM -- 5.6.3.1 Chemical Processes -- 5.6.3.2 Hybrid Mass Finishing and Chemical -- 5.6.3.3 Hybrid Mass Finishing and Electropolishing -- 5.6.3.4 Electropolishing Developments -- 5.6.3.5 Mass Finishing Targeted at AM -- 5.7 What Processes Are Appropriate for AM? -- 5.7.1 Narrow Channels -- 5.7.2 Complex Internal Channels -- 5.7.3 Internal Cavities (Surface Connected) -- 5.7.4 Variable Cross-Section Internal Channels -- 5.7.5 Outer Lattice Surfaces -- 5.7.6 Inner Lattice Surfaces -- 5.7.7 Thin Features -- 5.7.8 Closed Internal Cavities -- 5.8 Other Considerations for Finishing Operations in AM -- 5.9 How to Impact AM Design for Finishing -- 5.10 Future Work -- 5.10.1 New Processes and Technologies in Development -- 5.10.1.1 Hybrid AFM -- 5.10.1.2 Laser Polishing -- 5.10.1.3 Automation and Modelling -- 5.10.2 Future of This Field</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.10.2.1 Internal Targeted Finishing -- 5.10.2.2 Hybrid Technologies -- 5.10.2.3 Design Processes -- 5.10.2.4 Specification Standards -- 5.10.2.5 Automation and Targeted Finishing -- References -- Chapter 6 Standards in Additive Manufacturing -- 6.1 Introduction -- 6.2 AM Standards Roadmaps -- 6.2.1 America Makes -- 6.2.2 Identified Gaps in the Roadmaps -- 6.3 AM Powder Feedstock Characterisation Standards -- 6.3.1 Feedstock Sampling Strategy -- 6.3.2 Particle Size Determination and Distribution -- 6.3.3 Morphology Characterisation Methods -- 6.3.4 Flow Characteristics -- 6.3.5 Thermal Characterisation -- 6.3.6 Density Determination -- 6.3.7 Chemical Composition -- 6.4 Processes -- 6.5 Part Verification -- 6.5.1 Tensile Properties -- 6.5.2 Compressive Properties -- 6.5.3 Hardness Measurement -- 6.5.4 Fatigue Measurement Methods -- 6.5.5 Fracture Toughness -- 6.5.6 Other Properties -- 6.6 Surface Standards -- 6.6.1 Profile and Areal Surfaces -- 6.7 Dimensional Standards -- 6.7.1 Performance Verification of Coordinate Measuring Machines -- 6.8 Non-Destructive Evaluation Standards -- 6.8.1 Current Standards -- 6.8.2 Welding Standards -- 6.8.3 Casting Standards -- 6.9 Future and Planned Standards Activities -- References -- Chapter 7 Cost Implications of Precision Additive Manufacturing -- 7.1 Introduction -- 7.2 A Primer in Manufacturing Cost Modelling -- 7.3 Developing an AM Costing Framework -- 7.4 Specifying a Simple Cost Model for Precision AM -- 7.5 A Brief Discussion of the Cost Model for Precision AM -- 7.5.1 Indirect Cost Rates -- 7.5.2 Capacity Utilisation -- 7.5.3 Integration with Other Operational Processes -- 7.5.4 Relationship between Failure Parameters and Costs of Inspection -- 7.6 Summary and Additional Perspectives -- References -- Chapter 8 Machine Performance Evaluation -- 8.1 Introduction -- 8.1.1 Definitions -- 8.1.2 Motivation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.1.3 Background -- 8.1.4 Organisation of This Chapter -- 8.2 Three-Dimensional Test Artefacts -- 8.2.1 Key Contributions to 3D Test Artefacts -- 8.2.2 Strengths and Challenges of 3D Test Artefacts -- 8.2.3 Considerations for 3D Test Artefact Design -- 8.3 Component Testing -- 8.3.1 Key Contributions to Component Testing -- 8.3.2 Strengths and Challenges of Component Testing -- 8.3.3 General Principles of Component Testing -- 8.3.4 Z-Axis -- 8.3.5 Directed Energy Deposition Machine Error Motions -- 8.3.6 Powder Bed Fusion Machine Error Motions -- 8.3.7 Energy Beam Diagnostics -- 8.3.8 Non-Geometric Measurements -- 8.4 Two-Dimensional Test Artefacts -- 8.4.1 Strengths and Challenges of 2D Test Artefacts -- 8.4.2 Key Contributions to 2D Test Artefacts -- 8.4.3 Considerations for Designing a 2D Test Artefact -- 8.5 Areas for Future Research -- Disclaimer -- References -- Chapter 9 Non-Destructive Evaluation for Additive Manufacturing -- 9.1 Introduction -- 9.2 Typical Defects in AM -- 9.3 NDE Challenges in AM -- 9.4 NDE Methods - Advantages and Limitations -- 9.5 NDE Standardisation for AM -- 9.6 NDE for Qualification in AM -- 9.6.1 Post-Process Inspection -- 9.6.2 In-Process Inspection -- 9.7 NDE Reliability in AM -- 9.7.1 General Aspects of Experimental Pod Curves -- 9.7.1.1 General Aspects of PoD Curves Modelled through Experimental Data -- 9.7.1.2 Mathematical Simulation of PoD Curves -- 9.7.2 Estimation of Experimental PoD -- 9.8 Current PoD Performed in AM -- 9.9 Conclusions and Future Research -- Acknowledgements -- References -- Chapter 10 Post-Process Coordinate Metrology -- 10.1 Introduction -- 10.2 Basic Definitions -- 10.2.1 Surface and Coordinate Metrology Terms and Definitions -- 10.2.2 General Metrology Terms and Definitions -- 10.3 Basics for Coordinate Metrology -- 10.3.1 Coordinate Metrology System Configurations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.3.2 Coordinate Metrology Software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal-work</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metall</subfield><subfield code="0">(DE-588)4038860-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rapid Prototyping</subfield><subfield code="g">Fertigung</subfield><subfield code="0">(DE-588)4389159-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metallischer Werkstoff</subfield><subfield code="0">(DE-588)4136513-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Rapid Prototyping</subfield><subfield code="g">Fertigung</subfield><subfield code="0">(DE-588)4389159-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Metall</subfield><subfield code="0">(DE-588)4038860-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Metallischer Werkstoff</subfield><subfield code="0">(DE-588)4136513-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leach, Richard</subfield><subfield code="0">(DE-588)103694798X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carmignato, Simone</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Leach, Richard</subfield><subfield code="t">Precision Metal Additive Manufacturing</subfield><subfield code="d">Milton : Taylor &amp; Francis Group,c2020</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-138-34771-7</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032843962</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6272924</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV047441810
illustrated Not Illustrated
index_date 2024-07-03T18:01:23Z
indexdate 2024-11-25T18:02:39Z
institution BVB
isbn 9780429791284
9780429436543
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032843962
oclc_num 1181834117
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (xiv, 404 Seiten) Illustrationen, Diagramme
psigel ZDB-30-PQE
ZDB-30-PQE TUM_PDA_PQE_Kauf
publishDate 2021
publishDateSearch 2021
publishDateSort 2021
publisher CRC Press, Taylor & Francis Group
record_format marc
spellingShingle Precision metal additive manufacturing
Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Acknowledgements -- Editors -- Contributors -- Chapter 1 Introduction to Precision Metal Additive Manufacturing -- 1.1 Introduction to Additive Manufacturing -- 1.2 Basic Definitions -- 1.2.1 General Terms -- 1.2.2 Process Categories -- 1.2.3 Other Terms -- 1.3 Towards Precision Additive Manufacturing -- References -- Chapter 2 Topology Optimisation Techniques -- 2.1 Introduction -- 2.2 Topology Optimisation -- 2.2.1 Density-Based TO Method -- 2.2.1.1 Problem Formulation -- 2.2.1.2 Sensitivity Analysis -- 2.2.1.3 Filtering Techniques -- 2.2.1.4 Solution Approaches -- 2.2.1.5 Application Domains -- 2.3 Topology Optimisation for Precision Metal AM -- 2.3.1 TO Methods for Avoiding Overhangs in Precision AM Parts -- 2.3.1.1 Two-Dimensional Overhang Control -- 2.3.1.2 3D Overhang Control -- 2.3.1.3 Support Inclusion -- 2.3.2 TO Methods for Preventing Overheating in Precision AM Parts -- 2.3.3 Towards TO Methods for Avoiding Distortion in Precision AM Parts -- 2.4 Challenges and Outlook -- References -- Chapter 3 Development of Precision Additive Manufacturing Processes -- 3.1 Introduction -- 3.2 State of the Art and Insight into Precision Process Development -- 3.3 Setting Priorities -- 3.4 Significant Process Parameters -- 3.4.1 Laser-Related Process Parameters -- 3.4.2 Scan-Related Process Parameters -- 3.4.3 Powder-Related Process Parameters -- 3.4.4 Build Chamber-Related Parameters -- 3.4.5 Combined Processing Parameters -- 3.5 Additive Manufacturing Performance Indicators -- 3.5.1 Mechanical Properties -- 3.5.2 Dimensional Accuracy -- 3.5.3 Surface Texture -- 3.5.4 Part Density -- 3.5.5 Total Build Time -- 3.5.6 Energy Consumption -- 3.5.7 System-Wide Performance Indicators -- 3.6 Data-Driven Process Improvement -- 3.6.1 Design of Experiments
3.6.2 Modelling of Process Performance (Quantifying Input/Output Process Relationships) -- 3.6.2.1 Regression and Statistical Analysis -- 3.6.2.2 Artificial Neural Network Modelling -- 3.6.3 Process Optimisation -- 3.7 Precision Processes in the Domain of Industry 4.0 -- 3.7.1 Real-Time Monitoring of AM Processes -- 3.7.2 Artificial Intelligence and Decision-Making Systems for Digital Quality Control -- 3.8 Future Perspectives for Precision AM Processes -- 3.9 Conclusions -- Acknowledgements -- References -- Chapter 4 Modelling Techniques to Enhance Precision in Metal Additive Manufacturing -- 4.1 Introduction -- 4.2 Demystifying AM through Simulations -- 4.2.1 The Physics of Laser Powder Bed Fusion -- 4.2.2 Challenges of Length and Time Scales -- 4.3 Warpage and Distortion Predictions by Macro-Scale Modelling of AM -- 4.3.1 Understanding Thermal History, Residual Stresses and Distortions -- 4.3.2 Goals and Challenges in Macro-Scale Modelling of AM Parts -- 4.3.3 Full-Scale, Reduced-Order and Effective Models -- 4.4 Tracking Powders, Pores and Melt Pools during AM through Meso-Scale Models -- 4.4.1 Powder Bed Formation and Representation -- 4.4.2 Simulating Laser-Material Interactions -- 4.4.3 Melt-Pool Dynamics in a Powder Bed -- 4.4.4 Evolution of Porosity during AM -- 4.4.5 Surfaces and Solidification during AM -- 4.5 Microstructure Simulations in Precision AM -- 4.5.1 Understanding the Metallurgical Needs -- 4.5.2 Metallurgical Modelling Techniques -- 4.5.3 Revisiting Solidification during AM from a Metallurgical Perspective -- 4.5.4 Need for Heat-Treatment as Post-Process -- 4.6 Data-Driven Modelling for Process Windows -- 4.6.1 Data-Based Models -- 4.6.2 Digital and Physical Design of Experiments -- 4.6.3 GIGO Approach to Model Calibration -- 4.7 Concluding Remarks and Future Outlook -- References -- Chapter 5 Secondary Finishing Operations
5.1 Introduction -- 5.2 Basic Definition of Secondary Finishing -- 5.2.1 What Is Considered to Be Secondary Finishing in This Chapter? -- 5.2.2 Not Included in the Scope of This Chapter -- 5.3 Why Do AM Surfaces Need to Be Finished? -- 5.3.1 Impact of Surface Topography on Function -- 5.3.1.1 Fatigue Applications -- 5.3.2 Examples of AM Surfaces -- 5.4 Specification Standards in Secondary Finishing -- 5.5 Challenges for Finishing Operations for AM Parts -- 5.5.1 Typical Operational Challenges for Metal AM Components Due to Surface Morphologies and Topographies -- 5.5.1.1 Challenges of Surface Topography -- 5.5.1.2 Supporting Material and Witness Marks -- 5.5.1.3 Distortion -- 5.5.2 Geometrical Challenges for Finishing Operations -- 5.5.3 AM Process Chain Challenges for Finishing Operations -- 5.5.4 Finishing Challenges for AM in Precision Applications -- 5.6 Available Secondary Finishing Processes -- 5.6.1 Conventional Machining Methods -- 5.6.2 Non-Conventional Machining Methods -- 5.6.3 Emerging Technologies Developed for AM -- 5.6.3.1 Chemical Processes -- 5.6.3.2 Hybrid Mass Finishing and Chemical -- 5.6.3.3 Hybrid Mass Finishing and Electropolishing -- 5.6.3.4 Electropolishing Developments -- 5.6.3.5 Mass Finishing Targeted at AM -- 5.7 What Processes Are Appropriate for AM? -- 5.7.1 Narrow Channels -- 5.7.2 Complex Internal Channels -- 5.7.3 Internal Cavities (Surface Connected) -- 5.7.4 Variable Cross-Section Internal Channels -- 5.7.5 Outer Lattice Surfaces -- 5.7.6 Inner Lattice Surfaces -- 5.7.7 Thin Features -- 5.7.8 Closed Internal Cavities -- 5.8 Other Considerations for Finishing Operations in AM -- 5.9 How to Impact AM Design for Finishing -- 5.10 Future Work -- 5.10.1 New Processes and Technologies in Development -- 5.10.1.1 Hybrid AFM -- 5.10.1.2 Laser Polishing -- 5.10.1.3 Automation and Modelling -- 5.10.2 Future of This Field
5.10.2.1 Internal Targeted Finishing -- 5.10.2.2 Hybrid Technologies -- 5.10.2.3 Design Processes -- 5.10.2.4 Specification Standards -- 5.10.2.5 Automation and Targeted Finishing -- References -- Chapter 6 Standards in Additive Manufacturing -- 6.1 Introduction -- 6.2 AM Standards Roadmaps -- 6.2.1 America Makes -- 6.2.2 Identified Gaps in the Roadmaps -- 6.3 AM Powder Feedstock Characterisation Standards -- 6.3.1 Feedstock Sampling Strategy -- 6.3.2 Particle Size Determination and Distribution -- 6.3.3 Morphology Characterisation Methods -- 6.3.4 Flow Characteristics -- 6.3.5 Thermal Characterisation -- 6.3.6 Density Determination -- 6.3.7 Chemical Composition -- 6.4 Processes -- 6.5 Part Verification -- 6.5.1 Tensile Properties -- 6.5.2 Compressive Properties -- 6.5.3 Hardness Measurement -- 6.5.4 Fatigue Measurement Methods -- 6.5.5 Fracture Toughness -- 6.5.6 Other Properties -- 6.6 Surface Standards -- 6.6.1 Profile and Areal Surfaces -- 6.7 Dimensional Standards -- 6.7.1 Performance Verification of Coordinate Measuring Machines -- 6.8 Non-Destructive Evaluation Standards -- 6.8.1 Current Standards -- 6.8.2 Welding Standards -- 6.8.3 Casting Standards -- 6.9 Future and Planned Standards Activities -- References -- Chapter 7 Cost Implications of Precision Additive Manufacturing -- 7.1 Introduction -- 7.2 A Primer in Manufacturing Cost Modelling -- 7.3 Developing an AM Costing Framework -- 7.4 Specifying a Simple Cost Model for Precision AM -- 7.5 A Brief Discussion of the Cost Model for Precision AM -- 7.5.1 Indirect Cost Rates -- 7.5.2 Capacity Utilisation -- 7.5.3 Integration with Other Operational Processes -- 7.5.4 Relationship between Failure Parameters and Costs of Inspection -- 7.6 Summary and Additional Perspectives -- References -- Chapter 8 Machine Performance Evaluation -- 8.1 Introduction -- 8.1.1 Definitions -- 8.1.2 Motivation
8.1.3 Background -- 8.1.4 Organisation of This Chapter -- 8.2 Three-Dimensional Test Artefacts -- 8.2.1 Key Contributions to 3D Test Artefacts -- 8.2.2 Strengths and Challenges of 3D Test Artefacts -- 8.2.3 Considerations for 3D Test Artefact Design -- 8.3 Component Testing -- 8.3.1 Key Contributions to Component Testing -- 8.3.2 Strengths and Challenges of Component Testing -- 8.3.3 General Principles of Component Testing -- 8.3.4 Z-Axis -- 8.3.5 Directed Energy Deposition Machine Error Motions -- 8.3.6 Powder Bed Fusion Machine Error Motions -- 8.3.7 Energy Beam Diagnostics -- 8.3.8 Non-Geometric Measurements -- 8.4 Two-Dimensional Test Artefacts -- 8.4.1 Strengths and Challenges of 2D Test Artefacts -- 8.4.2 Key Contributions to 2D Test Artefacts -- 8.4.3 Considerations for Designing a 2D Test Artefact -- 8.5 Areas for Future Research -- Disclaimer -- References -- Chapter 9 Non-Destructive Evaluation for Additive Manufacturing -- 9.1 Introduction -- 9.2 Typical Defects in AM -- 9.3 NDE Challenges in AM -- 9.4 NDE Methods - Advantages and Limitations -- 9.5 NDE Standardisation for AM -- 9.6 NDE for Qualification in AM -- 9.6.1 Post-Process Inspection -- 9.6.2 In-Process Inspection -- 9.7 NDE Reliability in AM -- 9.7.1 General Aspects of Experimental Pod Curves -- 9.7.1.1 General Aspects of PoD Curves Modelled through Experimental Data -- 9.7.1.2 Mathematical Simulation of PoD Curves -- 9.7.2 Estimation of Experimental PoD -- 9.8 Current PoD Performed in AM -- 9.9 Conclusions and Future Research -- Acknowledgements -- References -- Chapter 10 Post-Process Coordinate Metrology -- 10.1 Introduction -- 10.2 Basic Definitions -- 10.2.1 Surface and Coordinate Metrology Terms and Definitions -- 10.2.2 General Metrology Terms and Definitions -- 10.3 Basics for Coordinate Metrology -- 10.3.1 Coordinate Metrology System Configurations
10.3.2 Coordinate Metrology Software
Metal-work
Metall (DE-588)4038860-8 gnd
Rapid Prototyping Fertigung (DE-588)4389159-7 gnd
Metallischer Werkstoff (DE-588)4136513-6 gnd
subject_GND (DE-588)4038860-8
(DE-588)4389159-7
(DE-588)4136513-6
title Precision metal additive manufacturing
title_auth Precision metal additive manufacturing
title_exact_search Precision metal additive manufacturing
title_exact_search_txtP Precision metal additive manufacturing
title_full Precision metal additive manufacturing edited by Richard Leach and Simone Carmignato
title_fullStr Precision metal additive manufacturing edited by Richard Leach and Simone Carmignato
title_full_unstemmed Precision metal additive manufacturing edited by Richard Leach and Simone Carmignato
title_short Precision metal additive manufacturing
title_sort precision metal additive manufacturing
topic Metal-work
Metall (DE-588)4038860-8 gnd
Rapid Prototyping Fertigung (DE-588)4389159-7 gnd
Metallischer Werkstoff (DE-588)4136513-6 gnd
topic_facet Metal-work
Metall
Rapid Prototyping Fertigung
Metallischer Werkstoff
work_keys_str_mv AT leachrichard precisionmetaladditivemanufacturing
AT carmignatosimone precisionmetaladditivemanufacturing