Precision metal additive manufacturing
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press, Taylor & Francis Group
2021
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | TUM01 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047441810 | ||
003 | DE-604 | ||
005 | 20230831 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 |||| o||u| ||||||eng d | ||
020 | |a 9780429791284 |9 978-0-429-79128-4 | ||
020 | |a 9780429436543 |9 978-0-429-43654-3 | ||
035 | |a (ZDB-30-PQE)EBC6272924 | ||
035 | |a (ZDB-30-PAD)EBC6272924 | ||
035 | |a (ZDB-89-EBL)EBL6272924 | ||
035 | |a (OCoLC)1181834117 | ||
035 | |a (DE-599)BVBBV047441810 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 671 | |
084 | |a ZM 9050 |0 (DE-625)157213: |2 rvk | ||
084 | |a FER 786 |2 stub | ||
245 | 1 | 0 | |a Precision metal additive manufacturing |c edited by Richard Leach and Simone Carmignato |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press, Taylor & Francis Group |c 2021 | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (xiv, 404 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Acknowledgements -- Editors -- Contributors -- Chapter 1 Introduction to Precision Metal Additive Manufacturing -- 1.1 Introduction to Additive Manufacturing -- 1.2 Basic Definitions -- 1.2.1 General Terms -- 1.2.2 Process Categories -- 1.2.3 Other Terms -- 1.3 Towards Precision Additive Manufacturing -- References -- Chapter 2 Topology Optimisation Techniques -- 2.1 Introduction -- 2.2 Topology Optimisation -- 2.2.1 Density-Based TO Method -- 2.2.1.1 Problem Formulation -- 2.2.1.2 Sensitivity Analysis -- 2.2.1.3 Filtering Techniques -- 2.2.1.4 Solution Approaches -- 2.2.1.5 Application Domains -- 2.3 Topology Optimisation for Precision Metal AM -- 2.3.1 TO Methods for Avoiding Overhangs in Precision AM Parts -- 2.3.1.1 Two-Dimensional Overhang Control -- 2.3.1.2 3D Overhang Control -- 2.3.1.3 Support Inclusion -- 2.3.2 TO Methods for Preventing Overheating in Precision AM Parts -- 2.3.3 Towards TO Methods for Avoiding Distortion in Precision AM Parts -- 2.4 Challenges and Outlook -- References -- Chapter 3 Development of Precision Additive Manufacturing Processes -- 3.1 Introduction -- 3.2 State of the Art and Insight into Precision Process Development -- 3.3 Setting Priorities -- 3.4 Significant Process Parameters -- 3.4.1 Laser-Related Process Parameters -- 3.4.2 Scan-Related Process Parameters -- 3.4.3 Powder-Related Process Parameters -- 3.4.4 Build Chamber-Related Parameters -- 3.4.5 Combined Processing Parameters -- 3.5 Additive Manufacturing Performance Indicators -- 3.5.1 Mechanical Properties -- 3.5.2 Dimensional Accuracy -- 3.5.3 Surface Texture -- 3.5.4 Part Density -- 3.5.5 Total Build Time -- 3.5.6 Energy Consumption -- 3.5.7 System-Wide Performance Indicators -- 3.6 Data-Driven Process Improvement -- 3.6.1 Design of Experiments | |
505 | 8 | |a 3.6.2 Modelling of Process Performance (Quantifying Input/Output Process Relationships) -- 3.6.2.1 Regression and Statistical Analysis -- 3.6.2.2 Artificial Neural Network Modelling -- 3.6.3 Process Optimisation -- 3.7 Precision Processes in the Domain of Industry 4.0 -- 3.7.1 Real-Time Monitoring of AM Processes -- 3.7.2 Artificial Intelligence and Decision-Making Systems for Digital Quality Control -- 3.8 Future Perspectives for Precision AM Processes -- 3.9 Conclusions -- Acknowledgements -- References -- Chapter 4 Modelling Techniques to Enhance Precision in Metal Additive Manufacturing -- 4.1 Introduction -- 4.2 Demystifying AM through Simulations -- 4.2.1 The Physics of Laser Powder Bed Fusion -- 4.2.2 Challenges of Length and Time Scales -- 4.3 Warpage and Distortion Predictions by Macro-Scale Modelling of AM -- 4.3.1 Understanding Thermal History, Residual Stresses and Distortions -- 4.3.2 Goals and Challenges in Macro-Scale Modelling of AM Parts -- 4.3.3 Full-Scale, Reduced-Order and Effective Models -- 4.4 Tracking Powders, Pores and Melt Pools during AM through Meso-Scale Models -- 4.4.1 Powder Bed Formation and Representation -- 4.4.2 Simulating Laser-Material Interactions -- 4.4.3 Melt-Pool Dynamics in a Powder Bed -- 4.4.4 Evolution of Porosity during AM -- 4.4.5 Surfaces and Solidification during AM -- 4.5 Microstructure Simulations in Precision AM -- 4.5.1 Understanding the Metallurgical Needs -- 4.5.2 Metallurgical Modelling Techniques -- 4.5.3 Revisiting Solidification during AM from a Metallurgical Perspective -- 4.5.4 Need for Heat-Treatment as Post-Process -- 4.6 Data-Driven Modelling for Process Windows -- 4.6.1 Data-Based Models -- 4.6.2 Digital and Physical Design of Experiments -- 4.6.3 GIGO Approach to Model Calibration -- 4.7 Concluding Remarks and Future Outlook -- References -- Chapter 5 Secondary Finishing Operations | |
505 | 8 | |a 5.1 Introduction -- 5.2 Basic Definition of Secondary Finishing -- 5.2.1 What Is Considered to Be Secondary Finishing in This Chapter? -- 5.2.2 Not Included in the Scope of This Chapter -- 5.3 Why Do AM Surfaces Need to Be Finished? -- 5.3.1 Impact of Surface Topography on Function -- 5.3.1.1 Fatigue Applications -- 5.3.2 Examples of AM Surfaces -- 5.4 Specification Standards in Secondary Finishing -- 5.5 Challenges for Finishing Operations for AM Parts -- 5.5.1 Typical Operational Challenges for Metal AM Components Due to Surface Morphologies and Topographies -- 5.5.1.1 Challenges of Surface Topography -- 5.5.1.2 Supporting Material and Witness Marks -- 5.5.1.3 Distortion -- 5.5.2 Geometrical Challenges for Finishing Operations -- 5.5.3 AM Process Chain Challenges for Finishing Operations -- 5.5.4 Finishing Challenges for AM in Precision Applications -- 5.6 Available Secondary Finishing Processes -- 5.6.1 Conventional Machining Methods -- 5.6.2 Non-Conventional Machining Methods -- 5.6.3 Emerging Technologies Developed for AM -- 5.6.3.1 Chemical Processes -- 5.6.3.2 Hybrid Mass Finishing and Chemical -- 5.6.3.3 Hybrid Mass Finishing and Electropolishing -- 5.6.3.4 Electropolishing Developments -- 5.6.3.5 Mass Finishing Targeted at AM -- 5.7 What Processes Are Appropriate for AM? -- 5.7.1 Narrow Channels -- 5.7.2 Complex Internal Channels -- 5.7.3 Internal Cavities (Surface Connected) -- 5.7.4 Variable Cross-Section Internal Channels -- 5.7.5 Outer Lattice Surfaces -- 5.7.6 Inner Lattice Surfaces -- 5.7.7 Thin Features -- 5.7.8 Closed Internal Cavities -- 5.8 Other Considerations for Finishing Operations in AM -- 5.9 How to Impact AM Design for Finishing -- 5.10 Future Work -- 5.10.1 New Processes and Technologies in Development -- 5.10.1.1 Hybrid AFM -- 5.10.1.2 Laser Polishing -- 5.10.1.3 Automation and Modelling -- 5.10.2 Future of This Field | |
505 | 8 | |a 5.10.2.1 Internal Targeted Finishing -- 5.10.2.2 Hybrid Technologies -- 5.10.2.3 Design Processes -- 5.10.2.4 Specification Standards -- 5.10.2.5 Automation and Targeted Finishing -- References -- Chapter 6 Standards in Additive Manufacturing -- 6.1 Introduction -- 6.2 AM Standards Roadmaps -- 6.2.1 America Makes -- 6.2.2 Identified Gaps in the Roadmaps -- 6.3 AM Powder Feedstock Characterisation Standards -- 6.3.1 Feedstock Sampling Strategy -- 6.3.2 Particle Size Determination and Distribution -- 6.3.3 Morphology Characterisation Methods -- 6.3.4 Flow Characteristics -- 6.3.5 Thermal Characterisation -- 6.3.6 Density Determination -- 6.3.7 Chemical Composition -- 6.4 Processes -- 6.5 Part Verification -- 6.5.1 Tensile Properties -- 6.5.2 Compressive Properties -- 6.5.3 Hardness Measurement -- 6.5.4 Fatigue Measurement Methods -- 6.5.5 Fracture Toughness -- 6.5.6 Other Properties -- 6.6 Surface Standards -- 6.6.1 Profile and Areal Surfaces -- 6.7 Dimensional Standards -- 6.7.1 Performance Verification of Coordinate Measuring Machines -- 6.8 Non-Destructive Evaluation Standards -- 6.8.1 Current Standards -- 6.8.2 Welding Standards -- 6.8.3 Casting Standards -- 6.9 Future and Planned Standards Activities -- References -- Chapter 7 Cost Implications of Precision Additive Manufacturing -- 7.1 Introduction -- 7.2 A Primer in Manufacturing Cost Modelling -- 7.3 Developing an AM Costing Framework -- 7.4 Specifying a Simple Cost Model for Precision AM -- 7.5 A Brief Discussion of the Cost Model for Precision AM -- 7.5.1 Indirect Cost Rates -- 7.5.2 Capacity Utilisation -- 7.5.3 Integration with Other Operational Processes -- 7.5.4 Relationship between Failure Parameters and Costs of Inspection -- 7.6 Summary and Additional Perspectives -- References -- Chapter 8 Machine Performance Evaluation -- 8.1 Introduction -- 8.1.1 Definitions -- 8.1.2 Motivation | |
505 | 8 | |a 8.1.3 Background -- 8.1.4 Organisation of This Chapter -- 8.2 Three-Dimensional Test Artefacts -- 8.2.1 Key Contributions to 3D Test Artefacts -- 8.2.2 Strengths and Challenges of 3D Test Artefacts -- 8.2.3 Considerations for 3D Test Artefact Design -- 8.3 Component Testing -- 8.3.1 Key Contributions to Component Testing -- 8.3.2 Strengths and Challenges of Component Testing -- 8.3.3 General Principles of Component Testing -- 8.3.4 Z-Axis -- 8.3.5 Directed Energy Deposition Machine Error Motions -- 8.3.6 Powder Bed Fusion Machine Error Motions -- 8.3.7 Energy Beam Diagnostics -- 8.3.8 Non-Geometric Measurements -- 8.4 Two-Dimensional Test Artefacts -- 8.4.1 Strengths and Challenges of 2D Test Artefacts -- 8.4.2 Key Contributions to 2D Test Artefacts -- 8.4.3 Considerations for Designing a 2D Test Artefact -- 8.5 Areas for Future Research -- Disclaimer -- References -- Chapter 9 Non-Destructive Evaluation for Additive Manufacturing -- 9.1 Introduction -- 9.2 Typical Defects in AM -- 9.3 NDE Challenges in AM -- 9.4 NDE Methods - Advantages and Limitations -- 9.5 NDE Standardisation for AM -- 9.6 NDE for Qualification in AM -- 9.6.1 Post-Process Inspection -- 9.6.2 In-Process Inspection -- 9.7 NDE Reliability in AM -- 9.7.1 General Aspects of Experimental Pod Curves -- 9.7.1.1 General Aspects of PoD Curves Modelled through Experimental Data -- 9.7.1.2 Mathematical Simulation of PoD Curves -- 9.7.2 Estimation of Experimental PoD -- 9.8 Current PoD Performed in AM -- 9.9 Conclusions and Future Research -- Acknowledgements -- References -- Chapter 10 Post-Process Coordinate Metrology -- 10.1 Introduction -- 10.2 Basic Definitions -- 10.2.1 Surface and Coordinate Metrology Terms and Definitions -- 10.2.2 General Metrology Terms and Definitions -- 10.3 Basics for Coordinate Metrology -- 10.3.1 Coordinate Metrology System Configurations | |
505 | 8 | |a 10.3.2 Coordinate Metrology Software | |
650 | 4 | |a Metal-work | |
650 | 0 | 7 | |a Metall |0 (DE-588)4038860-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Rapid Prototyping |g Fertigung |0 (DE-588)4389159-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Metallischer Werkstoff |0 (DE-588)4136513-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Rapid Prototyping |g Fertigung |0 (DE-588)4389159-7 |D s |
689 | 0 | 1 | |a Metall |0 (DE-588)4038860-8 |D s |
689 | 0 | 2 | |a Metallischer Werkstoff |0 (DE-588)4136513-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Leach, Richard |0 (DE-588)103694798X |4 edt | |
700 | 1 | |a Carmignato, Simone |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Leach, Richard |t Precision Metal Additive Manufacturing |d Milton : Taylor & Francis Group,c2020 |n Druck-Ausgabe, Hardcover |z 978-1-138-34771-7 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032843962 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6272924 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2577489 |
---|---|
DE-BY-TUM_local_url | https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6272924 Aggregator |
_version_ | 1816714734322319360 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Leach, Richard Carmignato, Simone |
author2_role | edt edt |
author2_variant | r l rl s c sc |
author_GND | (DE-588)103694798X |
author_facet | Leach, Richard Carmignato, Simone |
building | Verbundindex |
bvnumber | BV047441810 |
classification_rvk | ZM 9050 |
classification_tum | FER 786 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Acknowledgements -- Editors -- Contributors -- Chapter 1 Introduction to Precision Metal Additive Manufacturing -- 1.1 Introduction to Additive Manufacturing -- 1.2 Basic Definitions -- 1.2.1 General Terms -- 1.2.2 Process Categories -- 1.2.3 Other Terms -- 1.3 Towards Precision Additive Manufacturing -- References -- Chapter 2 Topology Optimisation Techniques -- 2.1 Introduction -- 2.2 Topology Optimisation -- 2.2.1 Density-Based TO Method -- 2.2.1.1 Problem Formulation -- 2.2.1.2 Sensitivity Analysis -- 2.2.1.3 Filtering Techniques -- 2.2.1.4 Solution Approaches -- 2.2.1.5 Application Domains -- 2.3 Topology Optimisation for Precision Metal AM -- 2.3.1 TO Methods for Avoiding Overhangs in Precision AM Parts -- 2.3.1.1 Two-Dimensional Overhang Control -- 2.3.1.2 3D Overhang Control -- 2.3.1.3 Support Inclusion -- 2.3.2 TO Methods for Preventing Overheating in Precision AM Parts -- 2.3.3 Towards TO Methods for Avoiding Distortion in Precision AM Parts -- 2.4 Challenges and Outlook -- References -- Chapter 3 Development of Precision Additive Manufacturing Processes -- 3.1 Introduction -- 3.2 State of the Art and Insight into Precision Process Development -- 3.3 Setting Priorities -- 3.4 Significant Process Parameters -- 3.4.1 Laser-Related Process Parameters -- 3.4.2 Scan-Related Process Parameters -- 3.4.3 Powder-Related Process Parameters -- 3.4.4 Build Chamber-Related Parameters -- 3.4.5 Combined Processing Parameters -- 3.5 Additive Manufacturing Performance Indicators -- 3.5.1 Mechanical Properties -- 3.5.2 Dimensional Accuracy -- 3.5.3 Surface Texture -- 3.5.4 Part Density -- 3.5.5 Total Build Time -- 3.5.6 Energy Consumption -- 3.5.7 System-Wide Performance Indicators -- 3.6 Data-Driven Process Improvement -- 3.6.1 Design of Experiments 3.6.2 Modelling of Process Performance (Quantifying Input/Output Process Relationships) -- 3.6.2.1 Regression and Statistical Analysis -- 3.6.2.2 Artificial Neural Network Modelling -- 3.6.3 Process Optimisation -- 3.7 Precision Processes in the Domain of Industry 4.0 -- 3.7.1 Real-Time Monitoring of AM Processes -- 3.7.2 Artificial Intelligence and Decision-Making Systems for Digital Quality Control -- 3.8 Future Perspectives for Precision AM Processes -- 3.9 Conclusions -- Acknowledgements -- References -- Chapter 4 Modelling Techniques to Enhance Precision in Metal Additive Manufacturing -- 4.1 Introduction -- 4.2 Demystifying AM through Simulations -- 4.2.1 The Physics of Laser Powder Bed Fusion -- 4.2.2 Challenges of Length and Time Scales -- 4.3 Warpage and Distortion Predictions by Macro-Scale Modelling of AM -- 4.3.1 Understanding Thermal History, Residual Stresses and Distortions -- 4.3.2 Goals and Challenges in Macro-Scale Modelling of AM Parts -- 4.3.3 Full-Scale, Reduced-Order and Effective Models -- 4.4 Tracking Powders, Pores and Melt Pools during AM through Meso-Scale Models -- 4.4.1 Powder Bed Formation and Representation -- 4.4.2 Simulating Laser-Material Interactions -- 4.4.3 Melt-Pool Dynamics in a Powder Bed -- 4.4.4 Evolution of Porosity during AM -- 4.4.5 Surfaces and Solidification during AM -- 4.5 Microstructure Simulations in Precision AM -- 4.5.1 Understanding the Metallurgical Needs -- 4.5.2 Metallurgical Modelling Techniques -- 4.5.3 Revisiting Solidification during AM from a Metallurgical Perspective -- 4.5.4 Need for Heat-Treatment as Post-Process -- 4.6 Data-Driven Modelling for Process Windows -- 4.6.1 Data-Based Models -- 4.6.2 Digital and Physical Design of Experiments -- 4.6.3 GIGO Approach to Model Calibration -- 4.7 Concluding Remarks and Future Outlook -- References -- Chapter 5 Secondary Finishing Operations 5.1 Introduction -- 5.2 Basic Definition of Secondary Finishing -- 5.2.1 What Is Considered to Be Secondary Finishing in This Chapter? -- 5.2.2 Not Included in the Scope of This Chapter -- 5.3 Why Do AM Surfaces Need to Be Finished? -- 5.3.1 Impact of Surface Topography on Function -- 5.3.1.1 Fatigue Applications -- 5.3.2 Examples of AM Surfaces -- 5.4 Specification Standards in Secondary Finishing -- 5.5 Challenges for Finishing Operations for AM Parts -- 5.5.1 Typical Operational Challenges for Metal AM Components Due to Surface Morphologies and Topographies -- 5.5.1.1 Challenges of Surface Topography -- 5.5.1.2 Supporting Material and Witness Marks -- 5.5.1.3 Distortion -- 5.5.2 Geometrical Challenges for Finishing Operations -- 5.5.3 AM Process Chain Challenges for Finishing Operations -- 5.5.4 Finishing Challenges for AM in Precision Applications -- 5.6 Available Secondary Finishing Processes -- 5.6.1 Conventional Machining Methods -- 5.6.2 Non-Conventional Machining Methods -- 5.6.3 Emerging Technologies Developed for AM -- 5.6.3.1 Chemical Processes -- 5.6.3.2 Hybrid Mass Finishing and Chemical -- 5.6.3.3 Hybrid Mass Finishing and Electropolishing -- 5.6.3.4 Electropolishing Developments -- 5.6.3.5 Mass Finishing Targeted at AM -- 5.7 What Processes Are Appropriate for AM? -- 5.7.1 Narrow Channels -- 5.7.2 Complex Internal Channels -- 5.7.3 Internal Cavities (Surface Connected) -- 5.7.4 Variable Cross-Section Internal Channels -- 5.7.5 Outer Lattice Surfaces -- 5.7.6 Inner Lattice Surfaces -- 5.7.7 Thin Features -- 5.7.8 Closed Internal Cavities -- 5.8 Other Considerations for Finishing Operations in AM -- 5.9 How to Impact AM Design for Finishing -- 5.10 Future Work -- 5.10.1 New Processes and Technologies in Development -- 5.10.1.1 Hybrid AFM -- 5.10.1.2 Laser Polishing -- 5.10.1.3 Automation and Modelling -- 5.10.2 Future of This Field 5.10.2.1 Internal Targeted Finishing -- 5.10.2.2 Hybrid Technologies -- 5.10.2.3 Design Processes -- 5.10.2.4 Specification Standards -- 5.10.2.5 Automation and Targeted Finishing -- References -- Chapter 6 Standards in Additive Manufacturing -- 6.1 Introduction -- 6.2 AM Standards Roadmaps -- 6.2.1 America Makes -- 6.2.2 Identified Gaps in the Roadmaps -- 6.3 AM Powder Feedstock Characterisation Standards -- 6.3.1 Feedstock Sampling Strategy -- 6.3.2 Particle Size Determination and Distribution -- 6.3.3 Morphology Characterisation Methods -- 6.3.4 Flow Characteristics -- 6.3.5 Thermal Characterisation -- 6.3.6 Density Determination -- 6.3.7 Chemical Composition -- 6.4 Processes -- 6.5 Part Verification -- 6.5.1 Tensile Properties -- 6.5.2 Compressive Properties -- 6.5.3 Hardness Measurement -- 6.5.4 Fatigue Measurement Methods -- 6.5.5 Fracture Toughness -- 6.5.6 Other Properties -- 6.6 Surface Standards -- 6.6.1 Profile and Areal Surfaces -- 6.7 Dimensional Standards -- 6.7.1 Performance Verification of Coordinate Measuring Machines -- 6.8 Non-Destructive Evaluation Standards -- 6.8.1 Current Standards -- 6.8.2 Welding Standards -- 6.8.3 Casting Standards -- 6.9 Future and Planned Standards Activities -- References -- Chapter 7 Cost Implications of Precision Additive Manufacturing -- 7.1 Introduction -- 7.2 A Primer in Manufacturing Cost Modelling -- 7.3 Developing an AM Costing Framework -- 7.4 Specifying a Simple Cost Model for Precision AM -- 7.5 A Brief Discussion of the Cost Model for Precision AM -- 7.5.1 Indirect Cost Rates -- 7.5.2 Capacity Utilisation -- 7.5.3 Integration with Other Operational Processes -- 7.5.4 Relationship between Failure Parameters and Costs of Inspection -- 7.6 Summary and Additional Perspectives -- References -- Chapter 8 Machine Performance Evaluation -- 8.1 Introduction -- 8.1.1 Definitions -- 8.1.2 Motivation 8.1.3 Background -- 8.1.4 Organisation of This Chapter -- 8.2 Three-Dimensional Test Artefacts -- 8.2.1 Key Contributions to 3D Test Artefacts -- 8.2.2 Strengths and Challenges of 3D Test Artefacts -- 8.2.3 Considerations for 3D Test Artefact Design -- 8.3 Component Testing -- 8.3.1 Key Contributions to Component Testing -- 8.3.2 Strengths and Challenges of Component Testing -- 8.3.3 General Principles of Component Testing -- 8.3.4 Z-Axis -- 8.3.5 Directed Energy Deposition Machine Error Motions -- 8.3.6 Powder Bed Fusion Machine Error Motions -- 8.3.7 Energy Beam Diagnostics -- 8.3.8 Non-Geometric Measurements -- 8.4 Two-Dimensional Test Artefacts -- 8.4.1 Strengths and Challenges of 2D Test Artefacts -- 8.4.2 Key Contributions to 2D Test Artefacts -- 8.4.3 Considerations for Designing a 2D Test Artefact -- 8.5 Areas for Future Research -- Disclaimer -- References -- Chapter 9 Non-Destructive Evaluation for Additive Manufacturing -- 9.1 Introduction -- 9.2 Typical Defects in AM -- 9.3 NDE Challenges in AM -- 9.4 NDE Methods - Advantages and Limitations -- 9.5 NDE Standardisation for AM -- 9.6 NDE for Qualification in AM -- 9.6.1 Post-Process Inspection -- 9.6.2 In-Process Inspection -- 9.7 NDE Reliability in AM -- 9.7.1 General Aspects of Experimental Pod Curves -- 9.7.1.1 General Aspects of PoD Curves Modelled through Experimental Data -- 9.7.1.2 Mathematical Simulation of PoD Curves -- 9.7.2 Estimation of Experimental PoD -- 9.8 Current PoD Performed in AM -- 9.9 Conclusions and Future Research -- Acknowledgements -- References -- Chapter 10 Post-Process Coordinate Metrology -- 10.1 Introduction -- 10.2 Basic Definitions -- 10.2.1 Surface and Coordinate Metrology Terms and Definitions -- 10.2.2 General Metrology Terms and Definitions -- 10.3 Basics for Coordinate Metrology -- 10.3.1 Coordinate Metrology System Configurations 10.3.2 Coordinate Metrology Software |
ctrlnum | (ZDB-30-PQE)EBC6272924 (ZDB-30-PAD)EBC6272924 (ZDB-89-EBL)EBL6272924 (OCoLC)1181834117 (DE-599)BVBBV047441810 |
dewey-full | 671 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 671 - Metalworking & primary metal products |
dewey-raw | 671 |
dewey-search | 671 |
dewey-sort | 3671 |
dewey-tens | 670 - Manufacturing |
discipline | Fertigungstechnik Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Fertigungstechnik Werkstoffwissenschaften / Fertigungstechnik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11548nmm a2200589zc 4500</leader><controlfield tag="001">BV047441810</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230831 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780429791284</subfield><subfield code="9">978-0-429-79128-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780429436543</subfield><subfield code="9">978-0-429-43654-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6272924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6272924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6272924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1181834117</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047441810</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">671</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 9050</subfield><subfield code="0">(DE-625)157213:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">FER 786</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Precision metal additive manufacturing</subfield><subfield code="c">edited by Richard Leach and Simone Carmignato</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press, Taylor & Francis Group</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 404 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Acknowledgements -- Editors -- Contributors -- Chapter 1 Introduction to Precision Metal Additive Manufacturing -- 1.1 Introduction to Additive Manufacturing -- 1.2 Basic Definitions -- 1.2.1 General Terms -- 1.2.2 Process Categories -- 1.2.3 Other Terms -- 1.3 Towards Precision Additive Manufacturing -- References -- Chapter 2 Topology Optimisation Techniques -- 2.1 Introduction -- 2.2 Topology Optimisation -- 2.2.1 Density-Based TO Method -- 2.2.1.1 Problem Formulation -- 2.2.1.2 Sensitivity Analysis -- 2.2.1.3 Filtering Techniques -- 2.2.1.4 Solution Approaches -- 2.2.1.5 Application Domains -- 2.3 Topology Optimisation for Precision Metal AM -- 2.3.1 TO Methods for Avoiding Overhangs in Precision AM Parts -- 2.3.1.1 Two-Dimensional Overhang Control -- 2.3.1.2 3D Overhang Control -- 2.3.1.3 Support Inclusion -- 2.3.2 TO Methods for Preventing Overheating in Precision AM Parts -- 2.3.3 Towards TO Methods for Avoiding Distortion in Precision AM Parts -- 2.4 Challenges and Outlook -- References -- Chapter 3 Development of Precision Additive Manufacturing Processes -- 3.1 Introduction -- 3.2 State of the Art and Insight into Precision Process Development -- 3.3 Setting Priorities -- 3.4 Significant Process Parameters -- 3.4.1 Laser-Related Process Parameters -- 3.4.2 Scan-Related Process Parameters -- 3.4.3 Powder-Related Process Parameters -- 3.4.4 Build Chamber-Related Parameters -- 3.4.5 Combined Processing Parameters -- 3.5 Additive Manufacturing Performance Indicators -- 3.5.1 Mechanical Properties -- 3.5.2 Dimensional Accuracy -- 3.5.3 Surface Texture -- 3.5.4 Part Density -- 3.5.5 Total Build Time -- 3.5.6 Energy Consumption -- 3.5.7 System-Wide Performance Indicators -- 3.6 Data-Driven Process Improvement -- 3.6.1 Design of Experiments</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.6.2 Modelling of Process Performance (Quantifying Input/Output Process Relationships) -- 3.6.2.1 Regression and Statistical Analysis -- 3.6.2.2 Artificial Neural Network Modelling -- 3.6.3 Process Optimisation -- 3.7 Precision Processes in the Domain of Industry 4.0 -- 3.7.1 Real-Time Monitoring of AM Processes -- 3.7.2 Artificial Intelligence and Decision-Making Systems for Digital Quality Control -- 3.8 Future Perspectives for Precision AM Processes -- 3.9 Conclusions -- Acknowledgements -- References -- Chapter 4 Modelling Techniques to Enhance Precision in Metal Additive Manufacturing -- 4.1 Introduction -- 4.2 Demystifying AM through Simulations -- 4.2.1 The Physics of Laser Powder Bed Fusion -- 4.2.2 Challenges of Length and Time Scales -- 4.3 Warpage and Distortion Predictions by Macro-Scale Modelling of AM -- 4.3.1 Understanding Thermal History, Residual Stresses and Distortions -- 4.3.2 Goals and Challenges in Macro-Scale Modelling of AM Parts -- 4.3.3 Full-Scale, Reduced-Order and Effective Models -- 4.4 Tracking Powders, Pores and Melt Pools during AM through Meso-Scale Models -- 4.4.1 Powder Bed Formation and Representation -- 4.4.2 Simulating Laser-Material Interactions -- 4.4.3 Melt-Pool Dynamics in a Powder Bed -- 4.4.4 Evolution of Porosity during AM -- 4.4.5 Surfaces and Solidification during AM -- 4.5 Microstructure Simulations in Precision AM -- 4.5.1 Understanding the Metallurgical Needs -- 4.5.2 Metallurgical Modelling Techniques -- 4.5.3 Revisiting Solidification during AM from a Metallurgical Perspective -- 4.5.4 Need for Heat-Treatment as Post-Process -- 4.6 Data-Driven Modelling for Process Windows -- 4.6.1 Data-Based Models -- 4.6.2 Digital and Physical Design of Experiments -- 4.6.3 GIGO Approach to Model Calibration -- 4.7 Concluding Remarks and Future Outlook -- References -- Chapter 5 Secondary Finishing Operations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.1 Introduction -- 5.2 Basic Definition of Secondary Finishing -- 5.2.1 What Is Considered to Be Secondary Finishing in This Chapter? -- 5.2.2 Not Included in the Scope of This Chapter -- 5.3 Why Do AM Surfaces Need to Be Finished? -- 5.3.1 Impact of Surface Topography on Function -- 5.3.1.1 Fatigue Applications -- 5.3.2 Examples of AM Surfaces -- 5.4 Specification Standards in Secondary Finishing -- 5.5 Challenges for Finishing Operations for AM Parts -- 5.5.1 Typical Operational Challenges for Metal AM Components Due to Surface Morphologies and Topographies -- 5.5.1.1 Challenges of Surface Topography -- 5.5.1.2 Supporting Material and Witness Marks -- 5.5.1.3 Distortion -- 5.5.2 Geometrical Challenges for Finishing Operations -- 5.5.3 AM Process Chain Challenges for Finishing Operations -- 5.5.4 Finishing Challenges for AM in Precision Applications -- 5.6 Available Secondary Finishing Processes -- 5.6.1 Conventional Machining Methods -- 5.6.2 Non-Conventional Machining Methods -- 5.6.3 Emerging Technologies Developed for AM -- 5.6.3.1 Chemical Processes -- 5.6.3.2 Hybrid Mass Finishing and Chemical -- 5.6.3.3 Hybrid Mass Finishing and Electropolishing -- 5.6.3.4 Electropolishing Developments -- 5.6.3.5 Mass Finishing Targeted at AM -- 5.7 What Processes Are Appropriate for AM? -- 5.7.1 Narrow Channels -- 5.7.2 Complex Internal Channels -- 5.7.3 Internal Cavities (Surface Connected) -- 5.7.4 Variable Cross-Section Internal Channels -- 5.7.5 Outer Lattice Surfaces -- 5.7.6 Inner Lattice Surfaces -- 5.7.7 Thin Features -- 5.7.8 Closed Internal Cavities -- 5.8 Other Considerations for Finishing Operations in AM -- 5.9 How to Impact AM Design for Finishing -- 5.10 Future Work -- 5.10.1 New Processes and Technologies in Development -- 5.10.1.1 Hybrid AFM -- 5.10.1.2 Laser Polishing -- 5.10.1.3 Automation and Modelling -- 5.10.2 Future of This Field</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.10.2.1 Internal Targeted Finishing -- 5.10.2.2 Hybrid Technologies -- 5.10.2.3 Design Processes -- 5.10.2.4 Specification Standards -- 5.10.2.5 Automation and Targeted Finishing -- References -- Chapter 6 Standards in Additive Manufacturing -- 6.1 Introduction -- 6.2 AM Standards Roadmaps -- 6.2.1 America Makes -- 6.2.2 Identified Gaps in the Roadmaps -- 6.3 AM Powder Feedstock Characterisation Standards -- 6.3.1 Feedstock Sampling Strategy -- 6.3.2 Particle Size Determination and Distribution -- 6.3.3 Morphology Characterisation Methods -- 6.3.4 Flow Characteristics -- 6.3.5 Thermal Characterisation -- 6.3.6 Density Determination -- 6.3.7 Chemical Composition -- 6.4 Processes -- 6.5 Part Verification -- 6.5.1 Tensile Properties -- 6.5.2 Compressive Properties -- 6.5.3 Hardness Measurement -- 6.5.4 Fatigue Measurement Methods -- 6.5.5 Fracture Toughness -- 6.5.6 Other Properties -- 6.6 Surface Standards -- 6.6.1 Profile and Areal Surfaces -- 6.7 Dimensional Standards -- 6.7.1 Performance Verification of Coordinate Measuring Machines -- 6.8 Non-Destructive Evaluation Standards -- 6.8.1 Current Standards -- 6.8.2 Welding Standards -- 6.8.3 Casting Standards -- 6.9 Future and Planned Standards Activities -- References -- Chapter 7 Cost Implications of Precision Additive Manufacturing -- 7.1 Introduction -- 7.2 A Primer in Manufacturing Cost Modelling -- 7.3 Developing an AM Costing Framework -- 7.4 Specifying a Simple Cost Model for Precision AM -- 7.5 A Brief Discussion of the Cost Model for Precision AM -- 7.5.1 Indirect Cost Rates -- 7.5.2 Capacity Utilisation -- 7.5.3 Integration with Other Operational Processes -- 7.5.4 Relationship between Failure Parameters and Costs of Inspection -- 7.6 Summary and Additional Perspectives -- References -- Chapter 8 Machine Performance Evaluation -- 8.1 Introduction -- 8.1.1 Definitions -- 8.1.2 Motivation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.1.3 Background -- 8.1.4 Organisation of This Chapter -- 8.2 Three-Dimensional Test Artefacts -- 8.2.1 Key Contributions to 3D Test Artefacts -- 8.2.2 Strengths and Challenges of 3D Test Artefacts -- 8.2.3 Considerations for 3D Test Artefact Design -- 8.3 Component Testing -- 8.3.1 Key Contributions to Component Testing -- 8.3.2 Strengths and Challenges of Component Testing -- 8.3.3 General Principles of Component Testing -- 8.3.4 Z-Axis -- 8.3.5 Directed Energy Deposition Machine Error Motions -- 8.3.6 Powder Bed Fusion Machine Error Motions -- 8.3.7 Energy Beam Diagnostics -- 8.3.8 Non-Geometric Measurements -- 8.4 Two-Dimensional Test Artefacts -- 8.4.1 Strengths and Challenges of 2D Test Artefacts -- 8.4.2 Key Contributions to 2D Test Artefacts -- 8.4.3 Considerations for Designing a 2D Test Artefact -- 8.5 Areas for Future Research -- Disclaimer -- References -- Chapter 9 Non-Destructive Evaluation for Additive Manufacturing -- 9.1 Introduction -- 9.2 Typical Defects in AM -- 9.3 NDE Challenges in AM -- 9.4 NDE Methods - Advantages and Limitations -- 9.5 NDE Standardisation for AM -- 9.6 NDE for Qualification in AM -- 9.6.1 Post-Process Inspection -- 9.6.2 In-Process Inspection -- 9.7 NDE Reliability in AM -- 9.7.1 General Aspects of Experimental Pod Curves -- 9.7.1.1 General Aspects of PoD Curves Modelled through Experimental Data -- 9.7.1.2 Mathematical Simulation of PoD Curves -- 9.7.2 Estimation of Experimental PoD -- 9.8 Current PoD Performed in AM -- 9.9 Conclusions and Future Research -- Acknowledgements -- References -- Chapter 10 Post-Process Coordinate Metrology -- 10.1 Introduction -- 10.2 Basic Definitions -- 10.2.1 Surface and Coordinate Metrology Terms and Definitions -- 10.2.2 General Metrology Terms and Definitions -- 10.3 Basics for Coordinate Metrology -- 10.3.1 Coordinate Metrology System Configurations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.3.2 Coordinate Metrology Software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal-work</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metall</subfield><subfield code="0">(DE-588)4038860-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rapid Prototyping</subfield><subfield code="g">Fertigung</subfield><subfield code="0">(DE-588)4389159-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metallischer Werkstoff</subfield><subfield code="0">(DE-588)4136513-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Rapid Prototyping</subfield><subfield code="g">Fertigung</subfield><subfield code="0">(DE-588)4389159-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Metall</subfield><subfield code="0">(DE-588)4038860-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Metallischer Werkstoff</subfield><subfield code="0">(DE-588)4136513-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leach, Richard</subfield><subfield code="0">(DE-588)103694798X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carmignato, Simone</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Leach, Richard</subfield><subfield code="t">Precision Metal Additive Manufacturing</subfield><subfield code="d">Milton : Taylor & Francis Group,c2020</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-138-34771-7</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032843962</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6272924</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047441810 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:23Z |
indexdate | 2024-11-25T18:02:39Z |
institution | BVB |
isbn | 9780429791284 9780429436543 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032843962 |
oclc_num | 1181834117 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xiv, 404 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | CRC Press, Taylor & Francis Group |
record_format | marc |
spellingShingle | Precision metal additive manufacturing Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Acknowledgements -- Editors -- Contributors -- Chapter 1 Introduction to Precision Metal Additive Manufacturing -- 1.1 Introduction to Additive Manufacturing -- 1.2 Basic Definitions -- 1.2.1 General Terms -- 1.2.2 Process Categories -- 1.2.3 Other Terms -- 1.3 Towards Precision Additive Manufacturing -- References -- Chapter 2 Topology Optimisation Techniques -- 2.1 Introduction -- 2.2 Topology Optimisation -- 2.2.1 Density-Based TO Method -- 2.2.1.1 Problem Formulation -- 2.2.1.2 Sensitivity Analysis -- 2.2.1.3 Filtering Techniques -- 2.2.1.4 Solution Approaches -- 2.2.1.5 Application Domains -- 2.3 Topology Optimisation for Precision Metal AM -- 2.3.1 TO Methods for Avoiding Overhangs in Precision AM Parts -- 2.3.1.1 Two-Dimensional Overhang Control -- 2.3.1.2 3D Overhang Control -- 2.3.1.3 Support Inclusion -- 2.3.2 TO Methods for Preventing Overheating in Precision AM Parts -- 2.3.3 Towards TO Methods for Avoiding Distortion in Precision AM Parts -- 2.4 Challenges and Outlook -- References -- Chapter 3 Development of Precision Additive Manufacturing Processes -- 3.1 Introduction -- 3.2 State of the Art and Insight into Precision Process Development -- 3.3 Setting Priorities -- 3.4 Significant Process Parameters -- 3.4.1 Laser-Related Process Parameters -- 3.4.2 Scan-Related Process Parameters -- 3.4.3 Powder-Related Process Parameters -- 3.4.4 Build Chamber-Related Parameters -- 3.4.5 Combined Processing Parameters -- 3.5 Additive Manufacturing Performance Indicators -- 3.5.1 Mechanical Properties -- 3.5.2 Dimensional Accuracy -- 3.5.3 Surface Texture -- 3.5.4 Part Density -- 3.5.5 Total Build Time -- 3.5.6 Energy Consumption -- 3.5.7 System-Wide Performance Indicators -- 3.6 Data-Driven Process Improvement -- 3.6.1 Design of Experiments 3.6.2 Modelling of Process Performance (Quantifying Input/Output Process Relationships) -- 3.6.2.1 Regression and Statistical Analysis -- 3.6.2.2 Artificial Neural Network Modelling -- 3.6.3 Process Optimisation -- 3.7 Precision Processes in the Domain of Industry 4.0 -- 3.7.1 Real-Time Monitoring of AM Processes -- 3.7.2 Artificial Intelligence and Decision-Making Systems for Digital Quality Control -- 3.8 Future Perspectives for Precision AM Processes -- 3.9 Conclusions -- Acknowledgements -- References -- Chapter 4 Modelling Techniques to Enhance Precision in Metal Additive Manufacturing -- 4.1 Introduction -- 4.2 Demystifying AM through Simulations -- 4.2.1 The Physics of Laser Powder Bed Fusion -- 4.2.2 Challenges of Length and Time Scales -- 4.3 Warpage and Distortion Predictions by Macro-Scale Modelling of AM -- 4.3.1 Understanding Thermal History, Residual Stresses and Distortions -- 4.3.2 Goals and Challenges in Macro-Scale Modelling of AM Parts -- 4.3.3 Full-Scale, Reduced-Order and Effective Models -- 4.4 Tracking Powders, Pores and Melt Pools during AM through Meso-Scale Models -- 4.4.1 Powder Bed Formation and Representation -- 4.4.2 Simulating Laser-Material Interactions -- 4.4.3 Melt-Pool Dynamics in a Powder Bed -- 4.4.4 Evolution of Porosity during AM -- 4.4.5 Surfaces and Solidification during AM -- 4.5 Microstructure Simulations in Precision AM -- 4.5.1 Understanding the Metallurgical Needs -- 4.5.2 Metallurgical Modelling Techniques -- 4.5.3 Revisiting Solidification during AM from a Metallurgical Perspective -- 4.5.4 Need for Heat-Treatment as Post-Process -- 4.6 Data-Driven Modelling for Process Windows -- 4.6.1 Data-Based Models -- 4.6.2 Digital and Physical Design of Experiments -- 4.6.3 GIGO Approach to Model Calibration -- 4.7 Concluding Remarks and Future Outlook -- References -- Chapter 5 Secondary Finishing Operations 5.1 Introduction -- 5.2 Basic Definition of Secondary Finishing -- 5.2.1 What Is Considered to Be Secondary Finishing in This Chapter? -- 5.2.2 Not Included in the Scope of This Chapter -- 5.3 Why Do AM Surfaces Need to Be Finished? -- 5.3.1 Impact of Surface Topography on Function -- 5.3.1.1 Fatigue Applications -- 5.3.2 Examples of AM Surfaces -- 5.4 Specification Standards in Secondary Finishing -- 5.5 Challenges for Finishing Operations for AM Parts -- 5.5.1 Typical Operational Challenges for Metal AM Components Due to Surface Morphologies and Topographies -- 5.5.1.1 Challenges of Surface Topography -- 5.5.1.2 Supporting Material and Witness Marks -- 5.5.1.3 Distortion -- 5.5.2 Geometrical Challenges for Finishing Operations -- 5.5.3 AM Process Chain Challenges for Finishing Operations -- 5.5.4 Finishing Challenges for AM in Precision Applications -- 5.6 Available Secondary Finishing Processes -- 5.6.1 Conventional Machining Methods -- 5.6.2 Non-Conventional Machining Methods -- 5.6.3 Emerging Technologies Developed for AM -- 5.6.3.1 Chemical Processes -- 5.6.3.2 Hybrid Mass Finishing and Chemical -- 5.6.3.3 Hybrid Mass Finishing and Electropolishing -- 5.6.3.4 Electropolishing Developments -- 5.6.3.5 Mass Finishing Targeted at AM -- 5.7 What Processes Are Appropriate for AM? -- 5.7.1 Narrow Channels -- 5.7.2 Complex Internal Channels -- 5.7.3 Internal Cavities (Surface Connected) -- 5.7.4 Variable Cross-Section Internal Channels -- 5.7.5 Outer Lattice Surfaces -- 5.7.6 Inner Lattice Surfaces -- 5.7.7 Thin Features -- 5.7.8 Closed Internal Cavities -- 5.8 Other Considerations for Finishing Operations in AM -- 5.9 How to Impact AM Design for Finishing -- 5.10 Future Work -- 5.10.1 New Processes and Technologies in Development -- 5.10.1.1 Hybrid AFM -- 5.10.1.2 Laser Polishing -- 5.10.1.3 Automation and Modelling -- 5.10.2 Future of This Field 5.10.2.1 Internal Targeted Finishing -- 5.10.2.2 Hybrid Technologies -- 5.10.2.3 Design Processes -- 5.10.2.4 Specification Standards -- 5.10.2.5 Automation and Targeted Finishing -- References -- Chapter 6 Standards in Additive Manufacturing -- 6.1 Introduction -- 6.2 AM Standards Roadmaps -- 6.2.1 America Makes -- 6.2.2 Identified Gaps in the Roadmaps -- 6.3 AM Powder Feedstock Characterisation Standards -- 6.3.1 Feedstock Sampling Strategy -- 6.3.2 Particle Size Determination and Distribution -- 6.3.3 Morphology Characterisation Methods -- 6.3.4 Flow Characteristics -- 6.3.5 Thermal Characterisation -- 6.3.6 Density Determination -- 6.3.7 Chemical Composition -- 6.4 Processes -- 6.5 Part Verification -- 6.5.1 Tensile Properties -- 6.5.2 Compressive Properties -- 6.5.3 Hardness Measurement -- 6.5.4 Fatigue Measurement Methods -- 6.5.5 Fracture Toughness -- 6.5.6 Other Properties -- 6.6 Surface Standards -- 6.6.1 Profile and Areal Surfaces -- 6.7 Dimensional Standards -- 6.7.1 Performance Verification of Coordinate Measuring Machines -- 6.8 Non-Destructive Evaluation Standards -- 6.8.1 Current Standards -- 6.8.2 Welding Standards -- 6.8.3 Casting Standards -- 6.9 Future and Planned Standards Activities -- References -- Chapter 7 Cost Implications of Precision Additive Manufacturing -- 7.1 Introduction -- 7.2 A Primer in Manufacturing Cost Modelling -- 7.3 Developing an AM Costing Framework -- 7.4 Specifying a Simple Cost Model for Precision AM -- 7.5 A Brief Discussion of the Cost Model for Precision AM -- 7.5.1 Indirect Cost Rates -- 7.5.2 Capacity Utilisation -- 7.5.3 Integration with Other Operational Processes -- 7.5.4 Relationship between Failure Parameters and Costs of Inspection -- 7.6 Summary and Additional Perspectives -- References -- Chapter 8 Machine Performance Evaluation -- 8.1 Introduction -- 8.1.1 Definitions -- 8.1.2 Motivation 8.1.3 Background -- 8.1.4 Organisation of This Chapter -- 8.2 Three-Dimensional Test Artefacts -- 8.2.1 Key Contributions to 3D Test Artefacts -- 8.2.2 Strengths and Challenges of 3D Test Artefacts -- 8.2.3 Considerations for 3D Test Artefact Design -- 8.3 Component Testing -- 8.3.1 Key Contributions to Component Testing -- 8.3.2 Strengths and Challenges of Component Testing -- 8.3.3 General Principles of Component Testing -- 8.3.4 Z-Axis -- 8.3.5 Directed Energy Deposition Machine Error Motions -- 8.3.6 Powder Bed Fusion Machine Error Motions -- 8.3.7 Energy Beam Diagnostics -- 8.3.8 Non-Geometric Measurements -- 8.4 Two-Dimensional Test Artefacts -- 8.4.1 Strengths and Challenges of 2D Test Artefacts -- 8.4.2 Key Contributions to 2D Test Artefacts -- 8.4.3 Considerations for Designing a 2D Test Artefact -- 8.5 Areas for Future Research -- Disclaimer -- References -- Chapter 9 Non-Destructive Evaluation for Additive Manufacturing -- 9.1 Introduction -- 9.2 Typical Defects in AM -- 9.3 NDE Challenges in AM -- 9.4 NDE Methods - Advantages and Limitations -- 9.5 NDE Standardisation for AM -- 9.6 NDE for Qualification in AM -- 9.6.1 Post-Process Inspection -- 9.6.2 In-Process Inspection -- 9.7 NDE Reliability in AM -- 9.7.1 General Aspects of Experimental Pod Curves -- 9.7.1.1 General Aspects of PoD Curves Modelled through Experimental Data -- 9.7.1.2 Mathematical Simulation of PoD Curves -- 9.7.2 Estimation of Experimental PoD -- 9.8 Current PoD Performed in AM -- 9.9 Conclusions and Future Research -- Acknowledgements -- References -- Chapter 10 Post-Process Coordinate Metrology -- 10.1 Introduction -- 10.2 Basic Definitions -- 10.2.1 Surface and Coordinate Metrology Terms and Definitions -- 10.2.2 General Metrology Terms and Definitions -- 10.3 Basics for Coordinate Metrology -- 10.3.1 Coordinate Metrology System Configurations 10.3.2 Coordinate Metrology Software Metal-work Metall (DE-588)4038860-8 gnd Rapid Prototyping Fertigung (DE-588)4389159-7 gnd Metallischer Werkstoff (DE-588)4136513-6 gnd |
subject_GND | (DE-588)4038860-8 (DE-588)4389159-7 (DE-588)4136513-6 |
title | Precision metal additive manufacturing |
title_auth | Precision metal additive manufacturing |
title_exact_search | Precision metal additive manufacturing |
title_exact_search_txtP | Precision metal additive manufacturing |
title_full | Precision metal additive manufacturing edited by Richard Leach and Simone Carmignato |
title_fullStr | Precision metal additive manufacturing edited by Richard Leach and Simone Carmignato |
title_full_unstemmed | Precision metal additive manufacturing edited by Richard Leach and Simone Carmignato |
title_short | Precision metal additive manufacturing |
title_sort | precision metal additive manufacturing |
topic | Metal-work Metall (DE-588)4038860-8 gnd Rapid Prototyping Fertigung (DE-588)4389159-7 gnd Metallischer Werkstoff (DE-588)4136513-6 gnd |
topic_facet | Metal-work Metall Rapid Prototyping Fertigung Metallischer Werkstoff |
work_keys_str_mv | AT leachrichard precisionmetaladditivemanufacturing AT carmignatosimone precisionmetaladditivemanufacturing |