Big data an art of decision making

"Manipulating and processing masses of digital data is never a purely technical activity. It requires an interpretative and exploratory outlook - already well known in the social sciences and the humanities - to convey intelligible results from data analysis algorithms and create new knowledge....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Schmitt, Églantine (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: London, UK ISTE Ltd. 2020
London ; Hoboken, NJ, USA Wiley 2020
Schriftenreihe:Information systems, web and pervasive computing series. Intellectual technologies set volume 7
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV047433982
003 DE-604
005 20211022
007 t|
008 210823s2020 xx a||| b||| 00||| eng d
020 |a 9781786305558  |c hardback  |9 978-1-78630-555-8 
035 |a (OCoLC)1269389644 
035 |a (DE-599)BVBBV047433982 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-521 
084 |a QP 327  |0 (DE-625)141858:  |2 rvk 
100 1 |a Schmitt, Églantine  |e Verfasser  |0 (DE-588)1241252912  |4 aut 
245 1 0 |a Big data  |b an art of decision making  |c Églantine Schmitt 
264 1 |a London, UK  |b ISTE Ltd.  |c 2020 
264 1 |a London ; Hoboken, NJ, USA  |b Wiley  |c 2020 
300 |a xiii, 259 Seiten  |b Illustrationen, Diagramme (schwarz-weiß)  |c 24 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Information systems, web and pervasive computing series. Intellectual technologies set  |v volume 7 
505 8 |a From trace to web data : an ontology of the digital footprint -- Toward an epistemic continuity anchored in the cultural sciences -- The status of computation in data sciences -- A practical big data use case -- From narratives to systems : how to shape and share data analysis -- The art of data visualization -- Knowledge and decision 
520 3 |a "Manipulating and processing masses of digital data is never a purely technical activity. It requires an interpretative and exploratory outlook - already well known in the social sciences and the humanities - to convey intelligible results from data analysis algorithms and create new knowledge. Big Data is based on an inquiry of several years within Proxem, a software publisher specializing in big data processing. The book examines how data scientists explore, interpret and visualize our digital traces to make sense of them, and to produce new knowledge. Grounded in epistemology and science and technology studies, Big Data offers a reflection on data in general, and on how they help us to better understand reality and decide on our daily actions."--Page 4 of cover, 
650 0 7 |a Big Data  |0 (DE-588)4802620-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Data Science  |0 (DE-588)1140936166  |2 gnd  |9 rswk-swf 
650 0 7 |a Data Mining  |0 (DE-588)4428654-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Erkenntnistheorie  |0 (DE-588)4070914-0  |2 gnd  |9 rswk-swf 
653 0 |a Big data 
653 0 |a Data mining 
653 0 |a Big data 
653 0 |a Data mining 
689 0 0 |a Big Data  |0 (DE-588)4802620-7  |D s 
689 0 1 |a Data Mining  |0 (DE-588)4428654-5  |D s 
689 0 |5 DE-604 
689 1 0 |a Data Science  |0 (DE-588)1140936166  |D s 
689 1 1 |a Erkenntnistheorie  |0 (DE-588)4070914-0  |D s 
689 1 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-1-119-77700-7  |w (DE-604)BV047442061 
830 0 |a Information systems, web and pervasive computing series. Intellectual technologies set  |v volume 7  |w (DE-604)BV045123022  |9 7 
856 4 2 |m Digitalisierung BSB München - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032836358&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-032836358 

Datensatz im Suchindex

_version_ 1819787159013425152
adam_text Contents Introduction.................................................................................................... vii Chapter 1. From Trace to Web Data: An Ontology of the Digital Footprint.......................................................................... 1 1.1. The epistemology of the cultural sciences............................................. 1.2. The footprint in evidential sciences....................................................... 1.3. The log or activity history.................................................................... 1.4. The digital footprint as a web log......................................................... 1.5. The intentionality of digital footprints.................................................. 1.6. Data as theoretically-loaded footprints.................................................. 7 9 14 18 20 24 Chapter 2. Toward an Epistemic Continuity Anchored in the Cultural Sciences.............................................................................. 29 2.1. Digital technology in the cultural sciences.......................................... 2.2. Field and corpus: two modes of access to reality.................................. 2.3. Virtual methods, a reconstruction of access to the field........................ 2.4. The challenges of the technical revolution of the text........................... 2.5. From the web as an object to the web as a corpus................................ 2.6. Conclusion............................................................................................ 31 34 38 48 59 69 Chapter 3. The Status of Computation in Data Sciences................. 71 3.1. Making data computable....................................................................... 3.2. The field of computability.................................................................... 3.3. Computational thinking......................................................................... 3.4. Computation in the natural sciences..................................................... 3.5. From exploratory analysis to data mining............................................. 3.6. The institutional and theoretical melting pot of data science................ 73 77 81 87 98 107 vi Big Data 3.7. The contribution of artificial intelligence............................................ 3.8. Conclusion............................................................................................ 115 122 Chapter 4. A Practical Big Data Use Case............................................. 125 4.1. Presentation of the case study............................................................... 4.2. Customer experience and coding of feedback....................................... 4.3. From the representative approach to the “big data” project.................. 4.4. Data preparation.................................................................................... 4.5. Design of the coding plan.................................................................... 4.6. The constitution of linguistic resources............................................... 4.7. Constituting the coding plan.................................................................. 4.8. Visibility of the lánguage activity.......................................................... 4.9. Storytelling and interpretation of the data............................................. 4.10. Conclusion.......................................................................................... 126 131 134 137 140 143 148 153 155 161 Chapter 5. From Narratives to Systems: How to Shape and Share Data Analysis............................................................... 165 5.1. Two epistemic configurations............................................................... 5.2. The genesis of systems.......................................................................... 5.3. Conclusion............................................................................................ 166 172 183 Chapter 6. The Art of Data Visualization............................................... 187 6.1. 6.2. 6.3. 6.4. 6.5. Graphic semiology............................................................................... Data cartography.................................................................................... Representation as evidence.................................................................. The visual language of design in system configuration........................ Materialization and interpretation of recommendations........................ 187 198 203 207 214 Chapter 7. Knowledge and Decision....................................................... 219 7.1. Big data, a pragmatic epistemology? .................................................. 7.2. Toward gradual validity of knowledge.................................................. 7.3. Deciding, knowing and measuring....................................................... 220 227 233 Conclusion....................................................................................................... 239 References....................................................................................................... 243 Index 257
any_adam_object 1
author Schmitt, Églantine
author_GND (DE-588)1241252912
author_facet Schmitt, Églantine
author_role aut
author_sort Schmitt, Églantine
author_variant é s és
building Verbundindex
bvnumber BV047433982
classification_rvk QP 327
contents From trace to web data : an ontology of the digital footprint -- Toward an epistemic continuity anchored in the cultural sciences -- The status of computation in data sciences -- A practical big data use case -- From narratives to systems : how to shape and share data analysis -- The art of data visualization -- Knowledge and decision
ctrlnum (OCoLC)1269389644
(DE-599)BVBBV047433982
discipline Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03275nam a2200517 cb4500</leader><controlfield tag="001">BV047433982</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211022 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">210823s2020 xx a||| b||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781786305558</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-78630-555-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1269389644</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047433982</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 327</subfield><subfield code="0">(DE-625)141858:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schmitt, Églantine</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1241252912</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big data</subfield><subfield code="b">an art of decision making</subfield><subfield code="c">Églantine Schmitt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London, UK</subfield><subfield code="b">ISTE Ltd.</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London ; Hoboken, NJ, USA</subfield><subfield code="b">Wiley</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 259 Seiten</subfield><subfield code="b">Illustrationen, Diagramme (schwarz-weiß)</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Information systems, web and pervasive computing series. Intellectual technologies set</subfield><subfield code="v">volume 7</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">From trace to web data : an ontology of the digital footprint -- Toward an epistemic continuity anchored in the cultural sciences -- The status of computation in data sciences -- A practical big data use case -- From narratives to systems : how to shape and share data analysis -- The art of data visualization -- Knowledge and decision</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Manipulating and processing masses of digital data is never a purely technical activity. It requires an interpretative and exploratory outlook - already well known in the social sciences and the humanities - to convey intelligible results from data analysis algorithms and create new knowledge. Big Data is based on an inquiry of several years within Proxem, a software publisher specializing in big data processing. The book examines how data scientists explore, interpret and visualize our digital traces to make sense of them, and to produce new knowledge. Grounded in epistemology and science and technology studies, Big Data offers a reflection on data in general, and on how they help us to better understand reality and decide on our daily actions."--Page 4 of cover,</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erkenntnistheorie</subfield><subfield code="0">(DE-588)4070914-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Erkenntnistheorie</subfield><subfield code="0">(DE-588)4070914-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-119-77700-7</subfield><subfield code="w">(DE-604)BV047442061</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Information systems, web and pervasive computing series. Intellectual technologies set</subfield><subfield code="v">volume 7</subfield><subfield code="w">(DE-604)BV045123022</subfield><subfield code="9">7</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung BSB München - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=032836358&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032836358</subfield></datafield></record></collection>
id DE-604.BV047433982
illustrated Illustrated
indexdate 2024-12-24T08:55:00Z
institution BVB
isbn 9781786305558
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032836358
oclc_num 1269389644
open_access_boolean
owner DE-12
DE-521
owner_facet DE-12
DE-521
physical xiii, 259 Seiten Illustrationen, Diagramme (schwarz-weiß) 24 cm
publishDate 2020
publishDateSearch 2020
publishDateSort 2020
publisher ISTE Ltd.
Wiley
record_format marc
series Information systems, web and pervasive computing series. Intellectual technologies set
series2 Information systems, web and pervasive computing series. Intellectual technologies set
spellingShingle Schmitt, Églantine
Big data an art of decision making
Information systems, web and pervasive computing series. Intellectual technologies set
From trace to web data : an ontology of the digital footprint -- Toward an epistemic continuity anchored in the cultural sciences -- The status of computation in data sciences -- A practical big data use case -- From narratives to systems : how to shape and share data analysis -- The art of data visualization -- Knowledge and decision
Big Data (DE-588)4802620-7 gnd
Data Science (DE-588)1140936166 gnd
Data Mining (DE-588)4428654-5 gnd
Erkenntnistheorie (DE-588)4070914-0 gnd
subject_GND (DE-588)4802620-7
(DE-588)1140936166
(DE-588)4428654-5
(DE-588)4070914-0
title Big data an art of decision making
title_auth Big data an art of decision making
title_exact_search Big data an art of decision making
title_full Big data an art of decision making Églantine Schmitt
title_fullStr Big data an art of decision making Églantine Schmitt
title_full_unstemmed Big data an art of decision making Églantine Schmitt
title_short Big data
title_sort big data an art of decision making
title_sub an art of decision making
topic Big Data (DE-588)4802620-7 gnd
Data Science (DE-588)1140936166 gnd
Data Mining (DE-588)4428654-5 gnd
Erkenntnistheorie (DE-588)4070914-0 gnd
topic_facet Big Data
Data Science
Data Mining
Erkenntnistheorie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032836358&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV045123022
work_keys_str_mv AT schmitteglantine bigdataanartofdecisionmaking