Big data an art of decision making
"Manipulating and processing masses of digital data is never a purely technical activity. It requires an interpretative and exploratory outlook - already well known in the social sciences and the humanities - to convey intelligible results from data analysis algorithms and create new knowledge....
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London, UK
ISTE Ltd.
2020
London ; Hoboken, NJ, USA Wiley 2020 |
Schriftenreihe: | Information systems, web and pervasive computing series. Intellectual technologies set
volume 7 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV047433982 | ||
003 | DE-604 | ||
005 | 20211022 | ||
007 | t| | ||
008 | 210823s2020 xx a||| b||| 00||| eng d | ||
020 | |a 9781786305558 |c hardback |9 978-1-78630-555-8 | ||
035 | |a (OCoLC)1269389644 | ||
035 | |a (DE-599)BVBBV047433982 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-521 | ||
084 | |a QP 327 |0 (DE-625)141858: |2 rvk | ||
100 | 1 | |a Schmitt, Églantine |e Verfasser |0 (DE-588)1241252912 |4 aut | |
245 | 1 | 0 | |a Big data |b an art of decision making |c Églantine Schmitt |
264 | 1 | |a London, UK |b ISTE Ltd. |c 2020 | |
264 | 1 | |a London ; Hoboken, NJ, USA |b Wiley |c 2020 | |
300 | |a xiii, 259 Seiten |b Illustrationen, Diagramme (schwarz-weiß) |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Information systems, web and pervasive computing series. Intellectual technologies set |v volume 7 | |
505 | 8 | |a From trace to web data : an ontology of the digital footprint -- Toward an epistemic continuity anchored in the cultural sciences -- The status of computation in data sciences -- A practical big data use case -- From narratives to systems : how to shape and share data analysis -- The art of data visualization -- Knowledge and decision | |
520 | 3 | |a "Manipulating and processing masses of digital data is never a purely technical activity. It requires an interpretative and exploratory outlook - already well known in the social sciences and the humanities - to convey intelligible results from data analysis algorithms and create new knowledge. Big Data is based on an inquiry of several years within Proxem, a software publisher specializing in big data processing. The book examines how data scientists explore, interpret and visualize our digital traces to make sense of them, and to produce new knowledge. Grounded in epistemology and science and technology studies, Big Data offers a reflection on data in general, and on how they help us to better understand reality and decide on our daily actions."--Page 4 of cover, | |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Science |0 (DE-588)1140936166 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erkenntnistheorie |0 (DE-588)4070914-0 |2 gnd |9 rswk-swf |
653 | 0 | |a Big data | |
653 | 0 | |a Data mining | |
653 | 0 | |a Big data | |
653 | 0 | |a Data mining | |
689 | 0 | 0 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | 1 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Data Science |0 (DE-588)1140936166 |D s |
689 | 1 | 1 | |a Erkenntnistheorie |0 (DE-588)4070914-0 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-119-77700-7 |w (DE-604)BV047442061 |
830 | 0 | |a Information systems, web and pervasive computing series. Intellectual technologies set |v volume 7 |w (DE-604)BV045123022 |9 7 | |
856 | 4 | 2 | |m Digitalisierung BSB München - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032836358&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032836358 |
Datensatz im Suchindex
_version_ | 1819787159013425152 |
---|---|
adam_text | Contents Introduction.................................................................................................... vii Chapter 1. From Trace to Web Data: An Ontology of the Digital Footprint.......................................................................... 1 1.1. The epistemology of the cultural sciences............................................. 1.2. The footprint in evidential sciences....................................................... 1.3. The log or activity history.................................................................... 1.4. The digital footprint as a web log......................................................... 1.5. The intentionality of digital footprints.................................................. 1.6. Data as theoretically-loaded footprints.................................................. 7 9 14 18 20 24 Chapter 2. Toward an Epistemic Continuity Anchored in the Cultural Sciences.............................................................................. 29 2.1. Digital technology in the cultural sciences.......................................... 2.2. Field and corpus: two modes of access to reality.................................. 2.3. Virtual methods, a reconstruction of access to the field........................ 2.4. The challenges of the technical revolution of the text........................... 2.5. From the web as an object to the web as a corpus................................ 2.6. Conclusion............................................................................................ 31 34 38 48 59 69 Chapter 3.
The Status of Computation in Data Sciences................. 71 3.1. Making data computable....................................................................... 3.2. The field of computability.................................................................... 3.3. Computational thinking......................................................................... 3.4. Computation in the natural sciences..................................................... 3.5. From exploratory analysis to data mining............................................. 3.6. The institutional and theoretical melting pot of data science................ 73 77 81 87 98 107
vi Big Data 3.7. The contribution of artificial intelligence............................................ 3.8. Conclusion............................................................................................ 115 122 Chapter 4. A Practical Big Data Use Case............................................. 125 4.1. Presentation of the case study............................................................... 4.2. Customer experience and coding of feedback....................................... 4.3. From the representative approach to the “big data” project.................. 4.4. Data preparation.................................................................................... 4.5. Design of the coding plan.................................................................... 4.6. The constitution of linguistic resources............................................... 4.7. Constituting the coding plan.................................................................. 4.8. Visibility of the lánguage activity.......................................................... 4.9. Storytelling and interpretation of the data............................................. 4.10. Conclusion.......................................................................................... 126 131 134 137 140 143 148 153 155 161 Chapter 5. From Narratives to Systems: How to Shape and Share Data Analysis............................................................... 165 5.1. Two epistemic configurations............................................................... 5.2. The genesis of
systems.......................................................................... 5.3. Conclusion............................................................................................ 166 172 183 Chapter 6. The Art of Data Visualization............................................... 187 6.1. 6.2. 6.3. 6.4. 6.5. Graphic semiology............................................................................... Data cartography.................................................................................... Representation as evidence.................................................................. The visual language of design in system configuration........................ Materialization and interpretation of recommendations........................ 187 198 203 207 214 Chapter 7. Knowledge and Decision....................................................... 219 7.1. Big data, a pragmatic epistemology? .................................................. 7.2. Toward gradual validity of knowledge.................................................. 7.3. Deciding, knowing and measuring....................................................... 220 227 233 Conclusion....................................................................................................... 239 References....................................................................................................... 243 Index 257
|
any_adam_object | 1 |
author | Schmitt, Églantine |
author_GND | (DE-588)1241252912 |
author_facet | Schmitt, Églantine |
author_role | aut |
author_sort | Schmitt, Églantine |
author_variant | é s és |
building | Verbundindex |
bvnumber | BV047433982 |
classification_rvk | QP 327 |
contents | From trace to web data : an ontology of the digital footprint -- Toward an epistemic continuity anchored in the cultural sciences -- The status of computation in data sciences -- A practical big data use case -- From narratives to systems : how to shape and share data analysis -- The art of data visualization -- Knowledge and decision |
ctrlnum | (OCoLC)1269389644 (DE-599)BVBBV047433982 |
discipline | Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03275nam a2200517 cb4500</leader><controlfield tag="001">BV047433982</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211022 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">210823s2020 xx a||| b||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781786305558</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-78630-555-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1269389644</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047433982</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 327</subfield><subfield code="0">(DE-625)141858:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schmitt, Églantine</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1241252912</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big data</subfield><subfield code="b">an art of decision making</subfield><subfield code="c">Églantine Schmitt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London, UK</subfield><subfield code="b">ISTE Ltd.</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London ; Hoboken, NJ, USA</subfield><subfield code="b">Wiley</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 259 Seiten</subfield><subfield code="b">Illustrationen, Diagramme (schwarz-weiß)</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Information systems, web and pervasive computing series. Intellectual technologies set</subfield><subfield code="v">volume 7</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">From trace to web data : an ontology of the digital footprint -- Toward an epistemic continuity anchored in the cultural sciences -- The status of computation in data sciences -- A practical big data use case -- From narratives to systems : how to shape and share data analysis -- The art of data visualization -- Knowledge and decision</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Manipulating and processing masses of digital data is never a purely technical activity. It requires an interpretative and exploratory outlook - already well known in the social sciences and the humanities - to convey intelligible results from data analysis algorithms and create new knowledge. Big Data is based on an inquiry of several years within Proxem, a software publisher specializing in big data processing. The book examines how data scientists explore, interpret and visualize our digital traces to make sense of them, and to produce new knowledge. Grounded in epistemology and science and technology studies, Big Data offers a reflection on data in general, and on how they help us to better understand reality and decide on our daily actions."--Page 4 of cover,</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erkenntnistheorie</subfield><subfield code="0">(DE-588)4070914-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Erkenntnistheorie</subfield><subfield code="0">(DE-588)4070914-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-119-77700-7</subfield><subfield code="w">(DE-604)BV047442061</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Information systems, web and pervasive computing series. Intellectual technologies set</subfield><subfield code="v">volume 7</subfield><subfield code="w">(DE-604)BV045123022</subfield><subfield code="9">7</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung BSB München - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032836358&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032836358</subfield></datafield></record></collection> |
id | DE-604.BV047433982 |
illustrated | Illustrated |
indexdate | 2024-12-24T08:55:00Z |
institution | BVB |
isbn | 9781786305558 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032836358 |
oclc_num | 1269389644 |
open_access_boolean | |
owner | DE-12 DE-521 |
owner_facet | DE-12 DE-521 |
physical | xiii, 259 Seiten Illustrationen, Diagramme (schwarz-weiß) 24 cm |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | ISTE Ltd. Wiley |
record_format | marc |
series | Information systems, web and pervasive computing series. Intellectual technologies set |
series2 | Information systems, web and pervasive computing series. Intellectual technologies set |
spellingShingle | Schmitt, Églantine Big data an art of decision making Information systems, web and pervasive computing series. Intellectual technologies set From trace to web data : an ontology of the digital footprint -- Toward an epistemic continuity anchored in the cultural sciences -- The status of computation in data sciences -- A practical big data use case -- From narratives to systems : how to shape and share data analysis -- The art of data visualization -- Knowledge and decision Big Data (DE-588)4802620-7 gnd Data Science (DE-588)1140936166 gnd Data Mining (DE-588)4428654-5 gnd Erkenntnistheorie (DE-588)4070914-0 gnd |
subject_GND | (DE-588)4802620-7 (DE-588)1140936166 (DE-588)4428654-5 (DE-588)4070914-0 |
title | Big data an art of decision making |
title_auth | Big data an art of decision making |
title_exact_search | Big data an art of decision making |
title_full | Big data an art of decision making Églantine Schmitt |
title_fullStr | Big data an art of decision making Églantine Schmitt |
title_full_unstemmed | Big data an art of decision making Églantine Schmitt |
title_short | Big data |
title_sort | big data an art of decision making |
title_sub | an art of decision making |
topic | Big Data (DE-588)4802620-7 gnd Data Science (DE-588)1140936166 gnd Data Mining (DE-588)4428654-5 gnd Erkenntnistheorie (DE-588)4070914-0 gnd |
topic_facet | Big Data Data Science Data Mining Erkenntnistheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032836358&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV045123022 |
work_keys_str_mv | AT schmitteglantine bigdataanartofdecisionmaking |