Probability & statistics for engineers & scientists

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Walpole, Ronald E. ca. 20./21. Jh (VerfasserIn), Myers, Raymond H. 1937- (VerfasserIn), Myers, Sharon L. ca. 20./21. Jh (VerfasserIn), Ye, Keying ca. 20./21. Jh (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boston ; Columbus ; Hoboken [und 22 weitere] Pearson [2016]
Ausgabe:Ninth edition, global edition
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV047409928
003 DE-604
005 20240312
007 t
008 210811s2016 |||| |||| 00||| eng d
020 |a 9781292161365  |c pbk  |9 978-1-292-16136-5 
020 |a 1292161361  |c pbk  |9 1-292-16136-1 
035 |a (OCoLC)1006741744 
035 |a (DE-599)BSZ493302565 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-739  |a DE-91G 
084 |a SK 800  |0 (DE-625)143256:  |2 rvk 
084 |a MAT 600  |2 stub 
100 1 |a Walpole, Ronald E.  |d ca. 20./21. Jh.  |e Verfasser  |0 (DE-588)1238711766  |4 aut 
245 1 0 |a Probability & statistics for engineers & scientists  |c Ronald E. Walpole (Roanoke College), Raymond H. Myers (Virginia Tech), Sharon L. Myers (Radford University), Keying Ye (University of Texas at San Antonio) 
246 1 3 |a Probability and statistics for engineers and scientists 
250 |a Ninth edition, global edition 
264 1 |a Boston ; Columbus ; Hoboken [und 22 weitere]  |b Pearson  |c [2016] 
300 |a 811 Seiten  |b Diagramme  |c 24 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Wahrscheinlichkeitsrechnung  |0 (DE-588)4064324-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Statistik  |0 (DE-588)4056995-0  |2 gnd  |9 rswk-swf 
653 0 |a Engineering / Statistical methods 
653 0 |a Probabilities 
689 0 0 |a Wahrscheinlichkeitsrechnung  |0 (DE-588)4064324-4  |D s 
689 0 1 |a Statistik  |0 (DE-588)4056995-0  |D s 
689 0 |5 DE-604 
700 1 |a Myers, Raymond H.  |d 1937-  |e Verfasser  |0 (DE-588)172269350  |4 aut 
700 1 |a Myers, Sharon L.  |d ca. 20./21. Jh.  |e Verfasser  |0 (DE-588)1238712134  |4 aut 
700 1 |a Ye, Keying  |d ca. 20./21. Jh.  |e Verfasser  |0 (DE-588)1238712800  |4 aut 
856 4 2 |m Digitalisierung UB Passau - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032810836&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-032810836 

Datensatz im Suchindex

DE-BY-TUM_katkey 2783353
_version_ 1816715018462298112
adam_text Contents Preface................................................................................................ 13 1 21 Introduction to Statistics and Data Analysis................ 1.1 1.2 1.3 1.4 1.5 1.6 1.7 2 Overview: Statistical Inference, Samples, Populations, and the Role of Probability............................................................................ Sampling Procedures; Collection of Data....................................... Measures of Location: The Sample Mean and Median................. Exercises..................................................................................... Measures of Variability..................................................................... Exercises..................................................................................... Discrete and Continuous Data.......................................................... Statistical Modeling, Scientific Inspection, andGraphical Diag­ nostics General Types of Statistical Studies: DesignedExperiment, Observational Study, and Retrospective Study ............................ Exercises..................................................................................... Probability.......................................................... 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Sample Space..................................................................................... Events................................................................................................. Exercises..................................................................................... Counting Sample Points.................................................................... Exercises..................................................................................... Probability of an Event.................................................................... Additive Rules................................................................................... Exercises..................................................................................... Conditional Probability, Independence, and theProduct Rule ... Exercises..................................................................................... Bayes’ Rule........................................................................................ Exercises..................................................................................... Review Exercises......................................................................... 21 27 31 33 34 37 37 38 47 50 55 55 58 62 64 71 72 76 79 82 89 92 96 97 Contents 2.8 3 Random Variables and Probability Distributions......... 3.1 3.2 3.3 3.4 3.5 4 Concept of a Random Variable.......................................................... Discrete Probability Distributions..................................................... Continuous Probability Distributions................................................ Exercises........................................................................................ Joint Probability Distributions.......................................................... Exercises........................................................................................ Review Exercises............................................................................ Potential Misconceptions and Hazards; Relationship to Material in Other Chapters................................................................................. 99 101 101 104 107 Ill 114 124 127 129 Mathematical Expectation......................................................... 131 4.1 4.2 4.3 4.4 4.5 5 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters................................................................................. Mean of a Random Variable............................................................... Exercises........................................................................................ Variance and Covariance of Random Variables................................ Exercises........................................................................................ Means and Variances of Linear Combinations of Random Variables Chebyshev’s Theorem.......................................................................... Exercises........................................................................................ Review Exercises............................................................................ Potential Misconceptions and Hazards; Relationship to Material in Other Chapters................................................................................. 131 137 139 147 148 155 157 159 162 Some Discrete Probability Distributions............................ 163 5.1 5.2 5.3 5.4 5.5 5.6 Introduction and Motivation.............................................................. Binomial and Multinomial Distributions.......................................... Exercises........................................................................................ Hypergeometric Distribution.............................................................. Exercises........................................................................................ Negative Binomial and Geometric Distributions............................ Poisson Distribution and the Poisson Process................................. Exercises........................................................................................ Review Exercises............................................................................ Potential Misconceptions and Hazards; Relationship to Material in Other Chapters................................................................................. 163 163 170 172 177 178 181 184 186 189 7 Contents 6 Some Continuous Probability Distributions..................... 191 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 7 191 192 196 202 205 207 213 214 220 221 221 223 226 227 229 Functions of Random Variables (Optional)...................... 231 7.1 7.2 7.3 8 Continuous Uniform Distribution....................................................... Normal Distribution............................................................................ Areas under the Normal Curve.......................................................... Applications of the Normal Distribution.......................................... Exercises........................................................................................ Normal Approximation to the Binomial.......................................... Exercises........................................................................................ Gamma and Exponential Distributions............................................ Chi-Squared Distribution..................................................................... Beta Distribution.................................... Lognormal Distribution....................................................................... Weibull Distribution (Optional)........................................................ Exercises........................................................................................ Review Exercises............................................................................ Potential Misconceptions and Hazards; Relationship to Material in Other Chapters................................................................................. Introduction.......................................................................................... Transformations of Variables.............................................................. Moments and Moment-Generating Functions.................................. Exercises........................................................................................ 231 231 238 242 Fundamental Sampling Distributions and Data Descriptions.................................................................. 245 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 Random Sampling............................................................................... Some Important Statistics................................................................... Exercises........................................................................................ Sampling Distributions........................................................................ Sampling Distribution of Means and the Central Limit Theorem. Exercises........................................................................................ Sampling Distribution of S 2............................................................... ¿-Distribution........................................................................................ F-Distribution...................................................................................... Quantile and Probability Plots.......................................................... Exercises........................................................................................ Review Exercises............................................................................ Potential Misconceptions and Hazards; Relationship to Material in Other Chapters................................................................................. 245 247 250 252 253 261 263 266 271 274 279 280 282 Contents 9 One- and Two-Sample Estimation Problems.................... 285 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 Introduction.......................................................................................... Statistical Inference.............................................................................. Classical Methods of Estimation........................................................ Single Sample: Estimating the Mean................................................ Standard Error of a Point Estimate................................................. Prediction Intervals............................................................................. Tolerance Limits................................................................................... Exercises........................................................................................ Two Samples: Estimating the Difference between Two Means ... Paired Observations.............................................................................. Exercises........................................................................................ Single Sample: Estimating a Proportion.......................................... Two Samples: Estimating the Difference between Two Proportions Exercises........................................................................................ Single Sample: Estimating the Variance.......................................... Two Samples: Estimating the Ratio of Two Variances.................. Exercises........................................................................................ Maximum Likelihood Estimation (Optional)................................... Exercises........................ Review Exercises............................................................................ Potential Misconceptions and Hazards; Relationship to Material in Other Chapters................................................................................. 285 285 286 289 296 297 300 302 305 311 314 316 320 322 323 325 327 327 332 333 336 10 One- and Two-Sample Tests of Hypotheses...................... 339 10.1 10.2 10.3 Statistical Hypotheses: General Concepts....................................... Testing a Statistical Hypothesis........................................................ The Use of P-Values for Decision Making in Testing Hypotheses. Exercises........................................................................................ 10.4 Single Sample: Tests Concerning a Single Mean............................ 10.5 Two Samples: Tests on Two Means................................................. 10.6 Choice of Sample Size for Testing Means......................................... 10.7 Graphical Methods for Comparing Means....................................... Exercises........................................................................................ 10.8 One Sample: Test on a Single Proportion......................................... 10.9 Two Samples: Tests on Two Proportions......................................... Exercises........................................................................................ 10.10 One- and Two-Sample Tests Concerning Variances....................... Exercises........................................................................................ 10.11 Goodness-of-Fit Test............................................................................ 10.12 Test for Independence (Categorical Data)....................................... 339 341 351 354 356 362 369 374 376 380 383 385 386 389 390 393 9 Contents 10.13 Test for Homogeneity.......................................................................... 10.14 Two-Sample Case Study..................................................................... Exercises........................................................................................ Review Exercises............................................................................ 10.15 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters................................................................................. 396 399 402 404 406 11 Simple Linear Regression and Correlation...................... 409 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12 11.13 Introduction to Linear Regression..................................................... The Simple Linear Regression Model................................................ Least Squares and the Fitted Model................................................. Exercises........................................................................................ Properties of the Least Squares Estimators..................................... Inferences Concerning the Regression Coefficients.......................... Prediction............................................................................................. Exercises........................................................................................ Choice of a Regression Model............................................................ Analysis-of-Variance Approach.......................................................... Test for Linearity of Regression: Data with Repeated Observations Exercises........................................................................................ Data Plots and Transformations......................................................... Simple Linear Regression Case Study................................................ Correlation............................................................................................ Exercises........................................................................................ Review Exercises............................................................................ Potential Misconceptions and Hazards; Relationship to Material in Other Chapters................................................................................. 409 410 414 418 420 423 428 431 434 434 436 441 444 448 450 455 456 462 12 Multiple Linear Regression and Certain Nonlinear Regression Models............................................ 463 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 Introduction.......................................................................................... Estimating the Coefficients................................................................. Linear Regression Model Using Matrices......................................... Exercises........................................................................................ Properties of the Least Squares Estimators..................................... Inferences in Multiple Linear Regression.......................................... Exercises........................................................................................ Choice of a Fitted Model through Hypothesis Testing.................. Special Case of Orthogonality (Optional)......................................... Exercises........................................................................................ Categorical or Indicator Variables..................................................... 463 464 467 470 473 475 481 482 487 491 492 Contents Exercises........................................................................................ 496 12.9 Sequential Methods for Model Selection.......................................... . 496 12.10 Study of Residuals and Violation of Assumptions (Model Check­ ing) .......................................................................................................... 502 12.11 Cross Validation, Cp, and Other Criteria for Model Selection.... 507 Exercises........................................................................................ 514 12.12 Special Nonlinear Models for Nonideal Conditions......................... 516 Exercises........................................................................................ 520 Review Exercises............................................................................ 521 12.13 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters................................................................................. 526 13 One-Factor Experiments: General.......................................... 527 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12 13.13 Analysis-of-Variance Technique.......................................................... The Strategy of Experimental Design................................................ One-Way Analysis of Variance: Completely Randomized Design (One-Way ANOVA).............................................................................. Tests for the Equality of Several Variances..................................... Exercises........................................................................................ Single-Degree-of-Freedom Comparisons............................................ Multiple Comparisons.......................................................................... Exercises........................................................................................ Comparing a Set of Treatments in Blocks....................................... Randomized Complete Block Designs................................................ Graphical Methods and Model Checking........................................ Data Transformations in Analysis of Variance................................ Exercises........................................................................................ Random Effects Models...................................................................... Case Study............................................................................................ Exercises........................................................................................ Review Exercises............................................................................ Potential Misconceptions and Hazards; Relationship to Material in Other Chapters................................................................................. 527 528 529 536 538 540 543 549 552 553 560 563 565 567 571 573 575 579 14 Factorial Experiments (Two or More Factors)................. 581 14.1 14.2 14.3 14.4 Introduction.......................................................................................... Interaction in the Two-Factor Experiment....................................... Two-Factor Analysis of Variance....................................................... Exercises........................................................................................ Three-Factor Experiments................................................................... Exercises........................................................................................ 581 582 585 595 599 606 11 Contents 14.5 14.6 Factorial Experiments for Random Effects and Mixed Models.... Exercises........................................................................................ Review Exercises............................................................................ Potential Misconceptions and Hazards; Relationship to Material in Other Chapters................................................................................. 608 612 614 616 15 2fe Factorial Experiments and Fractions........................... 617 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10 15.11 15.12 15.13 Introduction.......................................................................................... The 2k Factorial: Calculation of Effects and Analysis of Variance Nonreplicated 2k Factorial Experiment............................................ Exercises........................................................................................ Factorial Experiments in a Regression Setting................................ The Orthogonal Design....................................................................... Exercises.................................................... Fractional Factorial Experiments....................................................... Analysis of Fractional Factorial Experiments.................................. Exercises........................................................................................ Higher Fractions and Screening Designs.......................................... Construction of Resolution III and IV Designs with 8, 16, and 32 Design Points........................................................................................ Other Two-Level Resolution III Designs; The Plackett-Burman Designs................................................................................................... Introduction to Response Surface Methodology.............................. Robust Parameter Design................................................................... Exercises........................................................................................ Review Exercises............................................................................ Potential Misconceptions and Hazards; Relationship to Material in Other Chapters................................................................................. 617 618 624 629 632 637 645 646 652 654 656 657 658 659 663 672 673 674 16 Nonparametric Statistics........................................................ 675 16.1 16.2 16.3 16.4 16.5 16.6 16.7 Nonparametric Tests............................................................................ Signed-Rank Test................................................................................. Exercises........................................................................................ Wilcoxon Rank-Sum Test................................................................... Kruskal-Wallis Test.............................................................................. Exercises........................................................................................ Runs Test............................................................................................... Tolerance Limits................................................................................... Rank Correlation Coefficient.............................................................. Exercises........................................................................................ Review Exercises............................................................................ 675 680 683 685 688 690 691 694 694 697 699 Contents 17 Statistical Quality Control.................................................... 701 17.1 17.2 17.3 17.4 17.5 17.6 Introduction.......................................................................................... Nature of the Control Limits.............................................................. Purposes of the Control Chart.......................................................... Control Charts for Variables.............................................................. Control Charts for Attributes............................................................ Cusum Control Charts........................................................................ Review Exercises............................................................................ 701 703 703 704 717 725 726 18 .Bayesian Statistics .................................................................... 729 18.1 18.2 18.3 Bayesian Concepts............................................................................... Bayesian Inferences............................................................................. Bayes Estimates Using Decision Theory Framework..................... Exercises........................................................................................ 729 730 737 738 Bibliography.......................................................................... 741 Appendix A: Statistical Tables and Proofs............................. 745 Appendix B: Answers to Odd-Numbered Non-Review Exercises................................................................................... 789 Index 805
adam_txt Contents Preface. 13 1 21 Introduction to Statistics and Data Analysis. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 2 Overview: Statistical Inference, Samples, Populations, and the Role of Probability. Sampling Procedures; Collection of Data. Measures of Location: The Sample Mean and Median. Exercises. Measures of Variability. Exercises. Discrete and Continuous Data. Statistical Modeling, Scientific Inspection, andGraphical Diag­ nostics General Types of Statistical Studies: DesignedExperiment, Observational Study, and Retrospective Study . Exercises. Probability. 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Sample Space. Events. Exercises. Counting Sample Points. Exercises. Probability of an Event. Additive Rules. Exercises. Conditional Probability, Independence, and theProduct Rule . Exercises. Bayes’ Rule. Exercises. Review Exercises. 21 27 31 33 34 37 37 38 47 50 55 55 58 62 64 71 72 76 79 82 89 92 96 97 Contents 2.8 3 Random Variables and Probability Distributions. 3.1 3.2 3.3 3.4 3.5 4 Concept of a Random Variable. Discrete Probability Distributions. Continuous Probability Distributions. Exercises. Joint Probability Distributions. Exercises. Review Exercises. Potential Misconceptions and Hazards; Relationship to Material in Other Chapters. 99 101 101 104 107 Ill 114 124 127 129 Mathematical Expectation. 131 4.1 4.2 4.3 4.4 4.5 5 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters. Mean of a Random Variable. Exercises. Variance and Covariance of Random Variables. Exercises. Means and Variances of Linear Combinations of Random Variables Chebyshev’s Theorem. Exercises. Review Exercises. Potential Misconceptions and Hazards; Relationship to Material in Other Chapters. 131 137 139 147 148 155 157 159 162 Some Discrete Probability Distributions. 163 5.1 5.2 5.3 5.4 5.5 5.6 Introduction and Motivation. Binomial and Multinomial Distributions. Exercises. Hypergeometric Distribution. Exercises. Negative Binomial and Geometric Distributions. Poisson Distribution and the Poisson Process. Exercises. Review Exercises. Potential Misconceptions and Hazards; Relationship to Material in Other Chapters. 163 163 170 172 177 178 181 184 186 189 7 Contents 6 Some Continuous Probability Distributions. 191 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 7 191 192 196 202 205 207 213 214 220 221 221 223 226 227 229 Functions of Random Variables (Optional). 231 7.1 7.2 7.3 8 Continuous Uniform Distribution. Normal Distribution. Areas under the Normal Curve. Applications of the Normal Distribution. Exercises. Normal Approximation to the Binomial. Exercises. Gamma and Exponential Distributions. Chi-Squared Distribution. Beta Distribution. Lognormal Distribution. Weibull Distribution (Optional). Exercises. Review Exercises. Potential Misconceptions and Hazards; Relationship to Material in Other Chapters. Introduction. Transformations of Variables. Moments and Moment-Generating Functions. Exercises. 231 231 238 242 Fundamental Sampling Distributions and Data Descriptions. 245 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 Random Sampling. Some Important Statistics. Exercises. Sampling Distributions. Sampling Distribution of Means and the Central Limit Theorem. Exercises. Sampling Distribution of S'2. ¿-Distribution. F-Distribution. Quantile and Probability Plots. Exercises. Review Exercises. Potential Misconceptions and Hazards; Relationship to Material in Other Chapters. 245 247 250 252 253 261 263 266 271 274 279 280 282 Contents 9 One- and Two-Sample Estimation Problems. 285 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 Introduction. Statistical Inference. Classical Methods of Estimation. Single Sample: Estimating the Mean. Standard Error of a Point Estimate. Prediction Intervals. Tolerance Limits. Exercises. Two Samples: Estimating the Difference between Two Means . Paired Observations. Exercises. Single Sample: Estimating a Proportion. Two Samples: Estimating the Difference between Two Proportions Exercises. Single Sample: Estimating the Variance. Two Samples: Estimating the Ratio of Two Variances. Exercises. Maximum Likelihood Estimation (Optional). Exercises. Review Exercises. Potential Misconceptions and Hazards; Relationship to Material in Other Chapters. 285 285 286 289 296 297 300 302 305 311 314 316 320 322 323 325 327 327 332 333 336 10 One- and Two-Sample Tests of Hypotheses. 339 10.1 10.2 10.3 Statistical Hypotheses: General Concepts. Testing a Statistical Hypothesis. The Use of P-Values for Decision Making in Testing Hypotheses. Exercises. 10.4 Single Sample: Tests Concerning a Single Mean. 10.5 Two Samples: Tests on Two Means. 10.6 Choice of Sample Size for Testing Means. 10.7 Graphical Methods for Comparing Means. Exercises. 10.8 One Sample: Test on a Single Proportion. 10.9 Two Samples: Tests on Two Proportions. Exercises. 10.10 One- and Two-Sample Tests Concerning Variances. Exercises. 10.11 Goodness-of-Fit Test. 10.12 Test for Independence (Categorical Data). 339 341 351 354 356 362 369 374 376 380 383 385 386 389 390 393 9 Contents 10.13 Test for Homogeneity. 10.14 Two-Sample Case Study. Exercises. Review Exercises. 10.15 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters. 396 399 402 404 406 11 Simple Linear Regression and Correlation. 409 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12 11.13 Introduction to Linear Regression. The Simple Linear Regression Model. Least Squares and the Fitted Model. Exercises. Properties of the Least Squares Estimators. Inferences Concerning the Regression Coefficients. Prediction. Exercises. Choice of a Regression Model. Analysis-of-Variance Approach. Test for Linearity of Regression: Data with Repeated Observations Exercises. Data Plots and Transformations. Simple Linear Regression Case Study. Correlation. Exercises. Review Exercises. Potential Misconceptions and Hazards; Relationship to Material in Other Chapters. 409 410 414 418 420 423 428 431 434 434 436 441 444 448 450 455 456 462 12 Multiple Linear Regression and Certain Nonlinear Regression Models. 463 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 Introduction. Estimating the Coefficients. Linear Regression Model Using Matrices. Exercises. Properties of the Least Squares Estimators. Inferences in Multiple Linear Regression. Exercises. Choice of a Fitted Model through Hypothesis Testing. Special Case of Orthogonality (Optional). Exercises. Categorical or Indicator Variables. 463 464 467 470 473 475 481 482 487 491 492 Contents Exercises. 496 12.9 Sequential Methods for Model Selection. . 496 12.10 Study of Residuals and Violation of Assumptions (Model Check­ ing) . 502 12.11 Cross Validation, Cp, and Other Criteria for Model Selection. 507 Exercises. 514 12.12 Special Nonlinear Models for Nonideal Conditions. 516 Exercises. 520 Review Exercises. 521 12.13 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters. 526 13 One-Factor Experiments: General. 527 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12 13.13 Analysis-of-Variance Technique. The Strategy of Experimental Design. One-Way Analysis of Variance: Completely Randomized Design (One-Way ANOVA). Tests for the Equality of Several Variances. Exercises. Single-Degree-of-Freedom Comparisons. Multiple Comparisons. Exercises. Comparing a Set of Treatments in Blocks. Randomized Complete Block Designs. Graphical Methods and Model Checking. Data Transformations in Analysis of Variance. Exercises. Random Effects Models. Case Study. Exercises. Review Exercises. Potential Misconceptions and Hazards; Relationship to Material in Other Chapters. 527 528 529 536 538 540 543 549 552 553 560 563 565 567 571 573 575 579 14 Factorial Experiments (Two or More Factors). 581 14.1 14.2 14.3 14.4 Introduction. Interaction in the Two-Factor Experiment. Two-Factor Analysis of Variance. Exercises. Three-Factor Experiments. Exercises. 581 582 585 595 599 606 11 Contents 14.5 14.6 Factorial Experiments for Random Effects and Mixed Models. Exercises. Review Exercises. Potential Misconceptions and Hazards; Relationship to Material in Other Chapters. 608 612 614 616 15 2fe Factorial Experiments and Fractions. 617 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10 15.11 15.12 15.13 Introduction. The 2k Factorial: Calculation of Effects and Analysis of Variance Nonreplicated 2k Factorial Experiment. Exercises. Factorial Experiments in a Regression Setting. The Orthogonal Design. Exercises. Fractional Factorial Experiments. Analysis of Fractional Factorial Experiments. Exercises. Higher Fractions and Screening Designs. Construction of Resolution III and IV Designs with 8, 16, and 32 Design Points. Other Two-Level Resolution III Designs; The Plackett-Burman Designs. Introduction to Response Surface Methodology. Robust Parameter Design. Exercises. Review Exercises. Potential Misconceptions and Hazards; Relationship to Material in Other Chapters. 617 618 624 629 632 637 645 646 652 654 656 657 658 659 663 672 673 674 16 Nonparametric Statistics. 675 16.1 16.2 16.3 16.4 16.5 16.6 16.7 Nonparametric Tests. Signed-Rank Test. Exercises. Wilcoxon Rank-Sum Test. Kruskal-Wallis Test. Exercises. Runs Test. Tolerance Limits. Rank Correlation Coefficient. Exercises. Review Exercises. 675 680 683 685 688 690 691 694 694 697 699 Contents 17 Statistical Quality Control. 701 17.1 17.2 17.3 17.4 17.5 17.6 Introduction. Nature of the Control Limits. Purposes of the Control Chart. Control Charts for Variables. Control Charts for Attributes. Cusum Control Charts. Review Exercises. 701 703 703 704 717 725 726 18 .Bayesian Statistics . 729 18.1 18.2 18.3 Bayesian Concepts. Bayesian Inferences. Bayes Estimates Using Decision Theory Framework. Exercises. 729 730 737 738 Bibliography. 741 Appendix A: Statistical Tables and Proofs. 745 Appendix B: Answers to Odd-Numbered Non-Review Exercises. 789 Index 805
any_adam_object 1
any_adam_object_boolean 1
author Walpole, Ronald E. ca. 20./21. Jh
Myers, Raymond H. 1937-
Myers, Sharon L. ca. 20./21. Jh
Ye, Keying ca. 20./21. Jh
author_GND (DE-588)1238711766
(DE-588)172269350
(DE-588)1238712134
(DE-588)1238712800
author_facet Walpole, Ronald E. ca. 20./21. Jh
Myers, Raymond H. 1937-
Myers, Sharon L. ca. 20./21. Jh
Ye, Keying ca. 20./21. Jh
author_role aut
aut
aut
aut
author_sort Walpole, Ronald E. ca. 20./21. Jh
author_variant r e w re rew
r h m rh rhm
s l m sl slm
k y ky
building Verbundindex
bvnumber BV047409928
classification_rvk SK 800
classification_tum MAT 600
ctrlnum (OCoLC)1006741744
(DE-599)BSZ493302565
discipline Mathematik
discipline_str_mv Mathematik
edition Ninth edition, global edition
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02071nam a2200445 c 4500</leader><controlfield tag="001">BV047409928</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240312 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210811s2016 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781292161365</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-292-16136-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1292161361</subfield><subfield code="c">pbk</subfield><subfield code="9">1-292-16136-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1006741744</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ493302565</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 600</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Walpole, Ronald E.</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1238711766</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probability &amp; statistics for engineers &amp; scientists</subfield><subfield code="c">Ronald E. Walpole (Roanoke College), Raymond H. Myers (Virginia Tech), Sharon L. Myers (Radford University), Keying Ye (University of Texas at San Antonio)</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Probability and statistics for engineers and scientists</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Ninth edition, global edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston ; Columbus ; Hoboken [und 22 weitere]</subfield><subfield code="b">Pearson</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">811 Seiten</subfield><subfield code="b">Diagramme</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering / Statistical methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Probabilities</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Myers, Raymond H.</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172269350</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Myers, Sharon L.</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1238712134</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ye, Keying</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1238712800</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=032810836&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032810836</subfield></datafield></record></collection>
id DE-604.BV047409928
illustrated Not Illustrated
index_date 2024-07-03T17:55:11Z
indexdate 2024-11-25T18:02:39Z
institution BVB
isbn 9781292161365
1292161361
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032810836
oclc_num 1006741744
open_access_boolean
owner DE-739
DE-91G
DE-BY-TUM
owner_facet DE-739
DE-91G
DE-BY-TUM
physical 811 Seiten Diagramme 24 cm
publishDate 2016
publishDateSearch 2016
publishDateSort 2016
publisher Pearson
record_format marc
spellingShingle Walpole, Ronald E. ca. 20./21. Jh
Myers, Raymond H. 1937-
Myers, Sharon L. ca. 20./21. Jh
Ye, Keying ca. 20./21. Jh
Probability & statistics for engineers & scientists
Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd
Statistik (DE-588)4056995-0 gnd
subject_GND (DE-588)4064324-4
(DE-588)4056995-0
title Probability & statistics for engineers & scientists
title_alt Probability and statistics for engineers and scientists
title_auth Probability & statistics for engineers & scientists
title_exact_search Probability & statistics for engineers & scientists
title_exact_search_txtP Probability & statistics for engineers & scientists
title_full Probability & statistics for engineers & scientists Ronald E. Walpole (Roanoke College), Raymond H. Myers (Virginia Tech), Sharon L. Myers (Radford University), Keying Ye (University of Texas at San Antonio)
title_fullStr Probability & statistics for engineers & scientists Ronald E. Walpole (Roanoke College), Raymond H. Myers (Virginia Tech), Sharon L. Myers (Radford University), Keying Ye (University of Texas at San Antonio)
title_full_unstemmed Probability & statistics for engineers & scientists Ronald E. Walpole (Roanoke College), Raymond H. Myers (Virginia Tech), Sharon L. Myers (Radford University), Keying Ye (University of Texas at San Antonio)
title_short Probability & statistics for engineers & scientists
title_sort probability statistics for engineers scientists
topic Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd
Statistik (DE-588)4056995-0 gnd
topic_facet Wahrscheinlichkeitsrechnung
Statistik
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032810836&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT walpoleronalde probabilitystatisticsforengineersscientists
AT myersraymondh probabilitystatisticsforengineersscientists
AT myerssharonl probabilitystatisticsforengineersscientists
AT yekeying probabilitystatisticsforengineersscientists
AT walpoleronalde probabilityandstatisticsforengineersandscientists
AT myersraymondh probabilityandstatisticsforengineersandscientists
AT myerssharonl probabilityandstatisticsforengineersandscientists
AT yekeying probabilityandstatisticsforengineersandscientists