Python social media analytics analyze and visualize data from Twitter, YouTube, GitHub, and more

Leverage the power of Python to collect, process, and mine deep insights from social media data About This Book * Acquire data from various social media platforms such as Facebook, Twitter, YouTube, GitHub, and more * Analyze and extract actionable insights from your social data using various Python...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chatterjee, Siddhartha 1963- (VerfasserIn), Krystyanczuk, Michal (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Birmingham ; Mumbai Packt July 2017
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV047394754
003 DE-604
005 20210906
007 t|
008 210730s2017 xxka||| |||| 00||| eng d
020 |a 9781787121485  |c Pb.  |9 978-1-78712-148-5 
035 |a (OCoLC)1262568947 
035 |a (DE-599)GBV890546967 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a xxk  |c XA-GB  |a ii  |c XB-IN 
049 |a DE-706 
084 |a 54.53  |2 bkl 
100 1 |a Chatterjee, Siddhartha  |d 1963-  |0 (DE-588)124061795X  |4 aut 
245 1 0 |a Python social media analytics  |b analyze and visualize data from Twitter, YouTube, GitHub, and more  |c Siddhartha Chatterjee, Michal Krystyanczuk 
264 1 |a Birmingham ; Mumbai  |b Packt  |c July 2017 
300 |a vi, 295 Seiten  |b Illustrationen, Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
520 3 |a Leverage the power of Python to collect, process, and mine deep insights from social media data About This Book * Acquire data from various social media platforms such as Facebook, Twitter, YouTube, GitHub, and more * Analyze and extract actionable insights from your social data using various Python tools * A highly practical guide to conducting efficient social media analytics at scale Who This Book Is For If you are a programmer or a data analyst familiar with the Python programming language and want to perform analyses of your social data to acquire valuable business insights, this book is for you. The book does not assume any prior knowledge of any data analysis tool or process.  
520 3 |a What you will learn * Understand the basics of social media mining * Use PyMongo to clean, store, and access data in MongoDB * Understand user reactions and emotion detection on Facebook * Perform Twitter sentiment analysis and entity recognition using Python * Analyze video and campaign performance on YouTube * Mine popular trends on GitHub and predict the next big technology * Extract conversational topics on public internet forums * Analyze user interests on Pinterest * Perform large-scale social media analytics on the cloud In Detail Social Media platforms such as Facebook, Twitter, Forums, Pinterest, and YouTube have become part of everyday life in a big way. However, these complex and noisy data streams pose a potent challenge to everyone when it comes to harnessing them properly and benefiting from them. This book will introduce you to the concept of social media analytics and show you why it is important.  
520 3 |a Right from acquiring data from various social networking sources such as Twitter, Facebook, YouTube, Pinterest, and social forums, you will see how to clean data and make it ready for analytical operations using various Python APIs. You will also perform web scraping and visualize data using various tools such as plotly and matplotlib. Finally, you will be introduced to different techniques to perform analytics at scale for your social data on the cloud, using Python and Spark 
650 0 7 |a Visualisierung  |0 (DE-588)4188417-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Python  |g Programmiersprache  |0 (DE-588)4434275-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Social Media  |0 (DE-588)4639271-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Datenanalyse  |0 (DE-588)4123037-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Datenstruktur  |0 (DE-588)4011146-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Data Mining  |0 (DE-588)4428654-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Datenspeicherung  |0 (DE-588)4332175-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Datenanalyse  |0 (DE-588)4123037-1  |D s 
689 0 1 |a Social Media  |0 (DE-588)4639271-3  |D s 
689 0 2 |a Python  |g Programmiersprache  |0 (DE-588)4434275-5  |D s 
689 0 |5 DE-604 
689 1 0 |a Data Mining  |0 (DE-588)4428654-5  |D s 
689 1 1 |a Datenspeicherung  |0 (DE-588)4332175-6  |D s 
689 1 2 |a Datenstruktur  |0 (DE-588)4011146-5  |D s 
689 1 3 |a Visualisierung  |0 (DE-588)4188417-6  |D s 
689 1 4 |a Python  |g Programmiersprache  |0 (DE-588)4434275-5  |D s 
689 1 |5 DE-604 
700 1 |a Krystyanczuk, Michal  |0 (DE-588)1240618409  |4 aut 
943 1 |a oai:aleph.bib-bvb.de:BVB01-032795998 

Datensatz im Suchindex

_version_ 1819311239845642240
any_adam_object
author Chatterjee, Siddhartha 1963-
Krystyanczuk, Michal
author_GND (DE-588)124061795X
(DE-588)1240618409
author_facet Chatterjee, Siddhartha 1963-
Krystyanczuk, Michal
author_role aut
aut
author_sort Chatterjee, Siddhartha 1963-
author_variant s c sc
m k mk
building Verbundindex
bvnumber BV047394754
ctrlnum (OCoLC)1262568947
(DE-599)GBV890546967
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04079nam a2200529 c 4500</leader><controlfield tag="001">BV047394754</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210906 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">210730s2017 xxka||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781787121485</subfield><subfield code="c">Pb.</subfield><subfield code="9">978-1-78712-148-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1262568947</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV890546967</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield><subfield code="a">ii</subfield><subfield code="c">XB-IN</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.53</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chatterjee, Siddhartha</subfield><subfield code="d">1963-</subfield><subfield code="0">(DE-588)124061795X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Python social media analytics</subfield><subfield code="b">analyze and visualize data from Twitter, YouTube, GitHub, and more</subfield><subfield code="c">Siddhartha Chatterjee, Michal Krystyanczuk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham ; Mumbai</subfield><subfield code="b">Packt</subfield><subfield code="c">July 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">vi, 295 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Leverage the power of Python to collect, process, and mine deep insights from social media data About This Book * Acquire data from various social media platforms such as Facebook, Twitter, YouTube, GitHub, and more * Analyze and extract actionable insights from your social data using various Python tools * A highly practical guide to conducting efficient social media analytics at scale Who This Book Is For If you are a programmer or a data analyst familiar with the Python programming language and want to perform analyses of your social data to acquire valuable business insights, this book is for you. The book does not assume any prior knowledge of any data analysis tool or process. </subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">What you will learn * Understand the basics of social media mining * Use PyMongo to clean, store, and access data in MongoDB * Understand user reactions and emotion detection on Facebook * Perform Twitter sentiment analysis and entity recognition using Python * Analyze video and campaign performance on YouTube * Mine popular trends on GitHub and predict the next big technology * Extract conversational topics on public internet forums * Analyze user interests on Pinterest * Perform large-scale social media analytics on the cloud In Detail Social Media platforms such as Facebook, Twitter, Forums, Pinterest, and YouTube have become part of everyday life in a big way. However, these complex and noisy data streams pose a potent challenge to everyone when it comes to harnessing them properly and benefiting from them. This book will introduce you to the concept of social media analytics and show you why it is important. </subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Right from acquiring data from various social networking sources such as Twitter, Facebook, YouTube, Pinterest, and social forums, you will see how to clean data and make it ready for analytical operations using various Python APIs. You will also perform web scraping and visualize data using various tools such as plotly and matplotlib. Finally, you will be introduced to different techniques to perform analytics at scale for your social data on the cloud, using Python and Spark</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Visualisierung</subfield><subfield code="0">(DE-588)4188417-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Social Media</subfield><subfield code="0">(DE-588)4639271-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenstruktur</subfield><subfield code="0">(DE-588)4011146-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenspeicherung</subfield><subfield code="0">(DE-588)4332175-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Social Media</subfield><subfield code="0">(DE-588)4639271-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Datenspeicherung</subfield><subfield code="0">(DE-588)4332175-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Datenstruktur</subfield><subfield code="0">(DE-588)4011146-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Visualisierung</subfield><subfield code="0">(DE-588)4188417-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krystyanczuk, Michal</subfield><subfield code="0">(DE-588)1240618409</subfield><subfield code="4">aut</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032795998</subfield></datafield></record></collection>
id DE-604.BV047394754
illustrated Illustrated
indexdate 2024-12-24T08:53:22Z
institution BVB
isbn 9781787121485
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032795998
oclc_num 1262568947
open_access_boolean
owner DE-706
owner_facet DE-706
physical vi, 295 Seiten Illustrationen, Diagramme
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher Packt
record_format marc
spelling Chatterjee, Siddhartha 1963- (DE-588)124061795X aut
Python social media analytics analyze and visualize data from Twitter, YouTube, GitHub, and more Siddhartha Chatterjee, Michal Krystyanczuk
Birmingham ; Mumbai Packt July 2017
vi, 295 Seiten Illustrationen, Diagramme
txt rdacontent
n rdamedia
nc rdacarrier
Leverage the power of Python to collect, process, and mine deep insights from social media data About This Book * Acquire data from various social media platforms such as Facebook, Twitter, YouTube, GitHub, and more * Analyze and extract actionable insights from your social data using various Python tools * A highly practical guide to conducting efficient social media analytics at scale Who This Book Is For If you are a programmer or a data analyst familiar with the Python programming language and want to perform analyses of your social data to acquire valuable business insights, this book is for you. The book does not assume any prior knowledge of any data analysis tool or process.
What you will learn * Understand the basics of social media mining * Use PyMongo to clean, store, and access data in MongoDB * Understand user reactions and emotion detection on Facebook * Perform Twitter sentiment analysis and entity recognition using Python * Analyze video and campaign performance on YouTube * Mine popular trends on GitHub and predict the next big technology * Extract conversational topics on public internet forums * Analyze user interests on Pinterest * Perform large-scale social media analytics on the cloud In Detail Social Media platforms such as Facebook, Twitter, Forums, Pinterest, and YouTube have become part of everyday life in a big way. However, these complex and noisy data streams pose a potent challenge to everyone when it comes to harnessing them properly and benefiting from them. This book will introduce you to the concept of social media analytics and show you why it is important.
Right from acquiring data from various social networking sources such as Twitter, Facebook, YouTube, Pinterest, and social forums, you will see how to clean data and make it ready for analytical operations using various Python APIs. You will also perform web scraping and visualize data using various tools such as plotly and matplotlib. Finally, you will be introduced to different techniques to perform analytics at scale for your social data on the cloud, using Python and Spark
Visualisierung (DE-588)4188417-6 gnd rswk-swf
Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf
Social Media (DE-588)4639271-3 gnd rswk-swf
Datenanalyse (DE-588)4123037-1 gnd rswk-swf
Datenstruktur (DE-588)4011146-5 gnd rswk-swf
Data Mining (DE-588)4428654-5 gnd rswk-swf
Datenspeicherung (DE-588)4332175-6 gnd rswk-swf
Datenanalyse (DE-588)4123037-1 s
Social Media (DE-588)4639271-3 s
Python Programmiersprache (DE-588)4434275-5 s
DE-604
Data Mining (DE-588)4428654-5 s
Datenspeicherung (DE-588)4332175-6 s
Datenstruktur (DE-588)4011146-5 s
Visualisierung (DE-588)4188417-6 s
Krystyanczuk, Michal (DE-588)1240618409 aut
spellingShingle Chatterjee, Siddhartha 1963-
Krystyanczuk, Michal
Python social media analytics analyze and visualize data from Twitter, YouTube, GitHub, and more
Visualisierung (DE-588)4188417-6 gnd
Python Programmiersprache (DE-588)4434275-5 gnd
Social Media (DE-588)4639271-3 gnd
Datenanalyse (DE-588)4123037-1 gnd
Datenstruktur (DE-588)4011146-5 gnd
Data Mining (DE-588)4428654-5 gnd
Datenspeicherung (DE-588)4332175-6 gnd
subject_GND (DE-588)4188417-6
(DE-588)4434275-5
(DE-588)4639271-3
(DE-588)4123037-1
(DE-588)4011146-5
(DE-588)4428654-5
(DE-588)4332175-6
title Python social media analytics analyze and visualize data from Twitter, YouTube, GitHub, and more
title_auth Python social media analytics analyze and visualize data from Twitter, YouTube, GitHub, and more
title_exact_search Python social media analytics analyze and visualize data from Twitter, YouTube, GitHub, and more
title_full Python social media analytics analyze and visualize data from Twitter, YouTube, GitHub, and more Siddhartha Chatterjee, Michal Krystyanczuk
title_fullStr Python social media analytics analyze and visualize data from Twitter, YouTube, GitHub, and more Siddhartha Chatterjee, Michal Krystyanczuk
title_full_unstemmed Python social media analytics analyze and visualize data from Twitter, YouTube, GitHub, and more Siddhartha Chatterjee, Michal Krystyanczuk
title_short Python social media analytics
title_sort python social media analytics analyze and visualize data from twitter youtube github and more
title_sub analyze and visualize data from Twitter, YouTube, GitHub, and more
topic Visualisierung (DE-588)4188417-6 gnd
Python Programmiersprache (DE-588)4434275-5 gnd
Social Media (DE-588)4639271-3 gnd
Datenanalyse (DE-588)4123037-1 gnd
Datenstruktur (DE-588)4011146-5 gnd
Data Mining (DE-588)4428654-5 gnd
Datenspeicherung (DE-588)4332175-6 gnd
topic_facet Visualisierung
Python Programmiersprache
Social Media
Datenanalyse
Datenstruktur
Data Mining
Datenspeicherung
work_keys_str_mv AT chatterjeesiddhartha pythonsocialmediaanalyticsanalyzeandvisualizedatafromtwitteryoutubegithubandmore
AT krystyanczukmichal pythonsocialmediaanalyticsanalyzeandvisualizedatafromtwitteryoutubegithubandmore