Automated machine learning for business

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Larsen, Kai R. (VerfasserIn), Becker, Daniel S. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York Oxford University Press [2021]
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV047380736
003 DE-604
005 20220718
007 t
008 210721s2021 a||| |||| 00||| eng d
020 |a 9780190941659  |c hardback  |9 978-0-19-094165-9 
020 |a 9780190941666  |c paperback  |9 978-0-19-094166-6 
035 |a (OCoLC)1231450020 
035 |a (DE-599)BVBBV047380736 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-355  |a DE-945  |a DE-11  |a DE-83  |a DE-473  |a DE-862 
084 |a QP 345  |0 (DE-625)141866:  |2 rvk 
084 |a ST 300  |0 (DE-625)143650:  |2 rvk 
100 1 |a Larsen, Kai R.  |e Verfasser  |0 (DE-588)1241218730  |4 aut 
245 1 0 |a Automated machine learning for business  |c Kai R. Larsen and Daniel S. Becker 
264 1 |a New York  |b Oxford University Press  |c [2021] 
300 |a xvii, 328 Seiten  |b Illustrationen, Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Automation  |0 (DE-588)4003957-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Data Science  |0 (DE-588)1140936166  |2 gnd  |9 rswk-swf 
650 0 7 |a Unternehmen  |0 (DE-588)4061963-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Unternehmen  |0 (DE-588)4061963-1  |D s 
689 0 1 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |D s 
689 0 2 |a Automation  |0 (DE-588)4003957-2  |D s 
689 0 3 |a Data Science  |0 (DE-588)1140936166  |D s 
689 0 |C b  |5 DE-604 
700 1 |a Becker, Daniel S.  |e Verfasser  |0 (DE-588)1241218900  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe, EPUB  |z 978-0-19-094168-0 
856 4 2 |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032782321&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-032782321 

Datensatz im Suchindex

DE-473_call_number 31/QP 345 WX 99429
DE-473_location 3
DE-BY-862_location 2000
DE-BY-FWS_call_number 2000/ST 300 L334
DE-BY-FWS_katkey 1010642
DE-BY-FWS_media_number 083000523459
DE-BY-UBG_katkey 196848956
DE-BY-UBG_media_number 013908750857
_version_ 1811361886721015808
adam_text Contents Preface Automated Machine Learning (AutoML) A Notetolnstructors Acknowledgments Book Outline Dataset Download Copyrights SECTION I: WHY USE AUTOMATED MACHINE LEARNING? 1. What Is Machine Learning? 1.1 WhyLearnThis? 1.2 MachineLearninglsEverywhere 1.3 What Is Machine Learning? 1.4 DataforMachine Learning 1.5 Exercises 3 3 4 6 8 JO 2. Automating Machine Learning 2.1 What Is Automated Machine Learning? 2.2 What Automated MachineLearningls Not 2.3 AvailableToolsandPlatforms 2.4 Eight Criteria for AutoML Excellence 2.5 How Do the Fundamental Principles of Machine Learning and Artificial Intelligence Transfer to AutoML? A Point-by-Point Evaluation. 2.6 Exercises 11 12 14 15 17 20 21 SECTION II: DEFINING PROJECT OBJECTIVES 3. Specifyßus/nessProblem 3.1 Why Start with a Business Problem? 3.2 Problem Statements 3.3 Exercises 25 25 26 29 4. Acquire Subject Matter Expertise 4.1 Importance of Subject Matter Expertise 4.2 Exercises 31 31 32 5. Define Prediction Target 5.1 WhatlsaPrediction Target? 5.2 How Is the Target Important for Machine Learning? 5.3 Exercises/Discussion 33 33 35 Յ6 Contents 6. DecideonUmtofAnalysis 6.1 WhatlsaUnitofAnalysis? 6.2 How to Determine Unit of Analysis 6.3 Exercises 7. Success, Risk, and Continuation 7.1 7.2 7.3 7.4 Identify Success Criteria Foresee Risks DecideWhethertoContinue Exercises 37 37 38 39 40 40 41 44 45 SECTION III: ACQUIRE AND INTEGRATE DATA 8. AccessingandStoringData 8.1 8.2 8.3 8.4 Track Down Relevant Data ExamineDataandRemoveColumns Example Dataset Exercises 9. Data Integration 51 51 54 55 58 59 9.1 Joins 9.2 Exercises 60 69 10. Data Transformations 70 10.1 10.2 10.3 Splitting and Extracting New Columns 10.1.1 IF-THENStatementsand One-hot Encoding 10.1.2 RegularExpressions(RegEx) Transformations Exercises 11. Summarization 11.1 11.2 11.3 Summarize Crosstab Exercises 12. Data Reduction and Splitting 70 70 72 78 79 80 80 84 87 88 12.1 12.2 Unique Rows Filtering 88 91 12.3 12.4 Combining the data Exercises 92 94 SECTION IV: MODEL DATA 13. Startup Processes 13.1 13.2 Uploading Data Exercise 14. Feature Understanding and Setection 14.1 14.2 Descriptive Statistics Data Types 97 97 102 103 103 107 Contents vìi 14.3 14.4 Evaluations of Feature Content MissingValues 14.5 Exercises 113 15. Build Candidate Models 114 15.1 StartingtheProcess 15.2 Advanced Options 15.3 StartingtheAnalyticalProcess 15.4 Model Selection Process 15.4.1 Tournament Round 1:32% Sample 15.4.2 Tournament Round 2:64% Sample 15.4.3 TournamentRound3:CrossValidation 15.4.4 Tournament Round 4: Blending 15.5 Exercises 16. Understandingthe Process 16.1 16.2 16.3 16.4 16.5 114 116 121 127 128 131 131 132 133 134 LearningCurvesand Speed Accuraсу Tradeoffs Blueprints 16.3.1 NumericDataCleansmg(lmputation) 16.3.2 Standardization 16.3.3 One-hot Encoding 16.3.4 Ordinal Encoding 134 138 139 140 142 143 147 16.3.5 MatrixofWord-gramOccurrences 16.3.6 Classification Hyperparameter Optimization (Advanced Content) Exercises 149 151 154 156 17. Evaluate Model Performance 17.1 Introduction 17.2 ASampleAlgorithmandModel 17.3 ROC Curve 17.4 UsingtheLiftChartandProfitCurveforBusmessDecisions 17.5 Exercises 18. Comparing Model Pairs 18.1 18.2 110 112 Model Comparison PrioritizingModelingCriteriaandSelectingaModel 18.3 Exercises 157 157 159 164 176 179 180 180 185 187 SECTION V: INTERPRET AND COMMUNICATE 19. Interpret Model 19.1 Feature Impactson Target 19.2 The Overall impact of Features on the Target without ConsiderationofOtherFeatures 19.3 The Overall Impact of a Feature Adjusted for the Impact of Other Features 19.4 TheDirectionallmpactofFeaturesonTarget 19.5 ThePartiallmpactofFeaturesonTarget 191 191 192 193 194 195 viii Contents 19.6 ThePowerofLanguage 19.7 19.8 Hotspots Prediction Explanations 19.9 Exercises 20. Communicate Model Insights 198 201 203 205 206 20.1 Unlocking Holdout 20.2 Business Problem First 20.3 Pre-processing and Model Quality Metrics 20.4 Areas Where the Model Struggles 20.5 Most Predictive Features 20.6 NotAIIFeaturesAreCreatedEqual 207 209 210 213 214 214 20.7 20.8 217 218 Recommended BusinessActions Exercises SECTION VI: IMPLEMENT, DOCUMENT AND MAINTAIN 21. Set Up Prediction System 21.1 Retraining Model 21.2 21.3 Choose Deployment Strategy Exercises 22. Document Modeling Process for Reproducibility 22.1 22.2 Model Documentation Exercises 23. Create Model Monitoringand Maintenance Plan 23.1 23.2 23.3 Potential Problems Strategies Exercises 24. Seven Types of Target Leakage in Machine Learning and an Exercise 24.1 TypesofTargetLeakage 24.2 A Hands-on Exercise in DetectingTarget Leakage 24.3 Exercises 25. Time-Aware Modeling 25.1 An Example of Time-Aware Modeling 25.1.1 Problem Statement 25.1.2 Data 25.1.3 Initialize Analysis 25.1.4 Time-Aware Modeling Background 25.1.5 Data Preparation 25.1.6 Model Buildingand Residuals 25.1.7 Candidate Models 25.1.8 Selectingand Examininga Model 25.1.9 A Small Detour into Residuals 25.1.10 Model Value 25.1.11 LearningaboutAvocadoPriceDrivers 25.2 Exercises 221 221 222 227 228 228 229 230 230 230 232 233 233 236 239 240 240 240 241 241 241 244 247 247 249 253 256 256 258 Contents 26. Time-Series Modeling 26.1 The Assumptions of Time-Series Machine Learning 26.2 A Hands-on Exercise in Time-Series Analysis 26.2.1 Problem Context 26.2.2 Loading Data 26.2.3 SpecifyTimeUnitandGenerateFeatures 26.2.3 Examine Candidate Models 26.2.4 Digging into the Preferred Model 26.2.5 Predicting 26.3 Exercises 259 259 260 260 262 262 268 270 273 275 Appendix A. Datasets A.l Diabetes Patients Réadmissions Summary BusinessGoal Datasets Exercises Rights A.2 Luxury Shoes Summary 277 277 277 277 277 280 280 280 280 BusinessGoal Datasets Exercises A.3 Boston Airbnb Summary BusinessGoal Datasets Rights A.4 Part Backorders Summary BusinessGoal Datasets Exercises Rights A.5 Student Grades Portuguese Summary 281 281 283 283 283 284 284 287 287 287 287 287 288 289 289 289 BusinessGoal Datasets Exercises 289 289 290 Rights A.6 LendingClub Summary 293 293 293 BusinessGoal Dataset Rights A.7 CollegeStartingSalaries Summary 294 294 300 300 300 BusinessGoal Datasets Exercises 300 300 301 Rights 301 x Contents A.8 HRAttrition Summary Business Goal Datasets Exercises Rights A.9 Avocadopocalypse Now? Summary Business Goal Datasets Exercises Rights AppendixB. Optimization and Sorting Measures Appendixe. More on Cross Validation ЗОЇ ЗОЇ ՅՕշ ՅՕշ 304 305 305 305 3О6 3О6 307 307 ՅՕ8 311 References Index 315 319
adam_txt Contents Preface Automated Machine Learning (AutoML) A Notetolnstructors Acknowledgments Book Outline Dataset Download Copyrights SECTION I: WHY USE AUTOMATED MACHINE LEARNING? 1. What Is Machine Learning? 1.1 WhyLearnThis? 1.2 MachineLearninglsEverywhere 1.3 What Is Machine Learning? 1.4 DataforMachine Learning 1.5 Exercises 3 3 4 6 8 JO 2. Automating Machine Learning 2.1 What Is Automated Machine Learning? 2.2 What Automated MachineLearningls Not 2.3 AvailableToolsandPlatforms 2.4 Eight Criteria for AutoML Excellence 2.5 How Do the Fundamental Principles of Machine Learning and Artificial Intelligence Transfer to AutoML? A Point-by-Point Evaluation. 2.6 Exercises 11 12 14 15 17 20 21 SECTION II: DEFINING PROJECT OBJECTIVES 3. Specifyßus/nessProblem 3.1 Why Start with a Business Problem? 3.2 Problem Statements 3.3 Exercises 25 25 26 29 4. Acquire Subject Matter Expertise 4.1 Importance of Subject Matter Expertise 4.2 Exercises 31 31 32 5. Define Prediction Target 5.1 WhatlsaPrediction Target? 5.2 How Is the Target Important for Machine Learning? 5.3 Exercises/Discussion 33 33 35 Յ6 Contents 6. DecideonUmtofAnalysis 6.1 WhatlsaUnitofAnalysis? 6.2 How to Determine Unit of Analysis 6.3 Exercises 7. Success, Risk, and Continuation 7.1 7.2 7.3 7.4 Identify Success Criteria Foresee Risks DecideWhethertoContinue Exercises 37 37 38 39 40 40 41 44 45 SECTION III: ACQUIRE AND INTEGRATE DATA 8. AccessingandStoringData 8.1 8.2 8.3 8.4 Track Down Relevant Data ExamineDataandRemoveColumns Example Dataset Exercises 9. Data Integration 51 51 54 55 58 59 9.1 Joins 9.2 Exercises 60 69 10. Data Transformations 70 10.1 10.2 10.3 Splitting and Extracting New Columns 10.1.1 IF-THENStatementsand One-hot Encoding 10.1.2 RegularExpressions(RegEx) Transformations Exercises 11. Summarization 11.1 11.2 11.3 Summarize Crosstab Exercises 12. Data Reduction and Splitting 70 70 72 78 79 80 80 84 87 88 12.1 12.2 Unique Rows Filtering 88 91 12.3 12.4 Combining the data Exercises 92 94 SECTION IV: MODEL DATA 13. Startup Processes 13.1 13.2 Uploading Data Exercise 14. Feature Understanding and Setection 14.1 14.2 Descriptive Statistics Data Types 97 97 102 103 103 107 Contents vìi 14.3 14.4 Evaluations of Feature Content MissingValues 14.5 Exercises 113 15. Build Candidate Models 114 15.1 StartingtheProcess 15.2 Advanced Options 15.3 StartingtheAnalyticalProcess 15.4 Model Selection Process 15.4.1 Tournament Round 1:32% Sample 15.4.2 Tournament Round 2:64% Sample 15.4.3 TournamentRound3:CrossValidation 15.4.4 Tournament Round 4: Blending 15.5 Exercises 16. Understandingthe Process 16.1 16.2 16.3 16.4 16.5 114 116 121 127 128 131 131 132 133 134 LearningCurvesand Speed Accuraсу Tradeoffs Blueprints 16.3.1 NumericDataCleansmg(lmputation) 16.3.2 Standardization 16.3.3 One-hot Encoding 16.3.4 Ordinal Encoding 134 138 139 140 142 143 147 16.3.5 MatrixofWord-gramOccurrences 16.3.6 Classification Hyperparameter Optimization (Advanced Content) Exercises 149 151 154 156 17. Evaluate Model Performance 17.1 Introduction 17.2 ASampleAlgorithmandModel 17.3 ROC Curve 17.4 UsingtheLiftChartandProfitCurveforBusmessDecisions 17.5 Exercises 18. Comparing Model Pairs 18.1 18.2 110 112 Model Comparison PrioritizingModelingCriteriaandSelectingaModel 18.3 Exercises 157 157 159 164 176 179 180 180 185 187 SECTION V: INTERPRET AND COMMUNICATE 19. Interpret Model 19.1 Feature Impactson Target 19.2 The Overall impact of Features on the Target without ConsiderationofOtherFeatures 19.3 The Overall Impact of a Feature Adjusted for the Impact of Other Features 19.4 TheDirectionallmpactofFeaturesonTarget 19.5 ThePartiallmpactofFeaturesonTarget 191 191 192 193 194 195 viii Contents 19.6 ThePowerofLanguage 19.7 19.8 Hotspots Prediction Explanations 19.9 Exercises 20. Communicate Model Insights 198 201 203 205 206 20.1 Unlocking Holdout 20.2 Business Problem First 20.3 Pre-processing and Model Quality Metrics 20.4 Areas Where the Model Struggles 20.5 Most Predictive Features 20.6 NotAIIFeaturesAreCreatedEqual 207 209 210 213 214 214 20.7 20.8 217 218 Recommended BusinessActions Exercises SECTION VI: IMPLEMENT, DOCUMENT AND MAINTAIN 21. Set Up Prediction System 21.1 Retraining Model 21.2 21.3 Choose Deployment Strategy Exercises 22. Document Modeling Process for Reproducibility 22.1 22.2 Model Documentation Exercises 23. Create Model Monitoringand Maintenance Plan 23.1 23.2 23.3 Potential Problems Strategies Exercises 24. Seven Types of Target Leakage in Machine Learning and an Exercise 24.1 TypesofTargetLeakage 24.2 A Hands-on Exercise in DetectingTarget Leakage 24.3 Exercises 25. Time-Aware Modeling 25.1 An Example of Time-Aware Modeling 25.1.1 Problem Statement 25.1.2 Data 25.1.3 Initialize Analysis 25.1.4 Time-Aware Modeling Background 25.1.5 Data Preparation 25.1.6 Model Buildingand Residuals 25.1.7 Candidate Models 25.1.8 Selectingand Examininga Model 25.1.9 A Small Detour into Residuals 25.1.10 Model Value 25.1.11 LearningaboutAvocadoPriceDrivers 25.2 Exercises 221 221 222 227 228 228 229 230 230 230 232 233 233 236 239 240 240 240 241 241 241 244 247 247 249 253 256 256 258 Contents 26. Time-Series Modeling 26.1 The Assumptions of Time-Series Machine Learning 26.2 A Hands-on Exercise in Time-Series Analysis 26.2.1 Problem Context 26.2.2 Loading Data 26.2.3 SpecifyTimeUnitandGenerateFeatures 26.2.3 Examine Candidate Models 26.2.4 Digging into the Preferred Model 26.2.5 Predicting 26.3 Exercises 259 259 260 260 262 262 268 270 273 275 Appendix A. Datasets A.l Diabetes Patients Réadmissions Summary BusinessGoal Datasets Exercises Rights A.2 Luxury Shoes Summary 277 277 277 277 277 280 280 280 280 BusinessGoal Datasets Exercises A.3 Boston Airbnb Summary BusinessGoal Datasets Rights A.4 Part Backorders Summary BusinessGoal Datasets Exercises Rights A.5 Student Grades Portuguese Summary 281 281 283 283 283 284 284 287 287 287 287 287 288 289 289 289 BusinessGoal Datasets Exercises 289 289 290 Rights A.6 LendingClub Summary 293 293 293 BusinessGoal Dataset Rights A.7 CollegeStartingSalaries Summary 294 294 300 300 300 BusinessGoal Datasets Exercises 300 300 301 Rights 301 x Contents A.8 HRAttrition Summary Business Goal Datasets Exercises Rights A.9 Avocadopocalypse Now? Summary Business Goal Datasets Exercises Rights AppendixB. Optimization and Sorting Measures Appendixe. More on Cross Validation ЗОЇ ЗОЇ ՅՕշ ՅՕշ 304 305 305 305 3О6 3О6 307 307 ՅՕ8 311 References Index 315 319
any_adam_object 1
any_adam_object_boolean 1
author Larsen, Kai R.
Becker, Daniel S.
author_GND (DE-588)1241218730
(DE-588)1241218900
author_facet Larsen, Kai R.
Becker, Daniel S.
author_role aut
aut
author_sort Larsen, Kai R.
author_variant k r l kr krl
d s b ds dsb
building Verbundindex
bvnumber BV047380736
classification_rvk QP 345
ST 300
ctrlnum (OCoLC)1231450020
(DE-599)BVBBV047380736
discipline Informatik
Wirtschaftswissenschaften
discipline_str_mv Informatik
Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01904nam a2200433 c 4500</leader><controlfield tag="001">BV047380736</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220718 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210721s2021 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780190941659</subfield><subfield code="c">hardback</subfield><subfield code="9">978-0-19-094165-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780190941666</subfield><subfield code="c">paperback</subfield><subfield code="9">978-0-19-094166-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1231450020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047380736</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 345</subfield><subfield code="0">(DE-625)141866:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Larsen, Kai R.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1241218730</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automated machine learning for business</subfield><subfield code="c">Kai R. Larsen and Daniel S. Becker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 328 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automation</subfield><subfield code="0">(DE-588)4003957-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unternehmen</subfield><subfield code="0">(DE-588)4061963-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unternehmen</subfield><subfield code="0">(DE-588)4061963-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Automation</subfield><subfield code="0">(DE-588)4003957-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Becker, Daniel S.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1241218900</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-0-19-094168-0</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=032782321&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032782321</subfield></datafield></record></collection>
id DE-604.BV047380736
illustrated Illustrated
index_date 2024-07-03T17:47:29Z
indexdate 2024-09-27T16:47:09Z
institution BVB
isbn 9780190941659
9780190941666
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032782321
oclc_num 1231450020
open_access_boolean
owner DE-355
DE-BY-UBR
DE-945
DE-11
DE-83
DE-473
DE-BY-UBG
DE-862
DE-BY-FWS
owner_facet DE-355
DE-BY-UBR
DE-945
DE-11
DE-83
DE-473
DE-BY-UBG
DE-862
DE-BY-FWS
physical xvii, 328 Seiten Illustrationen, Diagramme
publishDate 2021
publishDateSearch 2021
publishDateSort 2021
publisher Oxford University Press
record_format marc
spellingShingle Larsen, Kai R.
Becker, Daniel S.
Automated machine learning for business
Maschinelles Lernen (DE-588)4193754-5 gnd
Automation (DE-588)4003957-2 gnd
Data Science (DE-588)1140936166 gnd
Unternehmen (DE-588)4061963-1 gnd
subject_GND (DE-588)4193754-5
(DE-588)4003957-2
(DE-588)1140936166
(DE-588)4061963-1
title Automated machine learning for business
title_auth Automated machine learning for business
title_exact_search Automated machine learning for business
title_exact_search_txtP Automated machine learning for business
title_full Automated machine learning for business Kai R. Larsen and Daniel S. Becker
title_fullStr Automated machine learning for business Kai R. Larsen and Daniel S. Becker
title_full_unstemmed Automated machine learning for business Kai R. Larsen and Daniel S. Becker
title_short Automated machine learning for business
title_sort automated machine learning for business
topic Maschinelles Lernen (DE-588)4193754-5 gnd
Automation (DE-588)4003957-2 gnd
Data Science (DE-588)1140936166 gnd
Unternehmen (DE-588)4061963-1 gnd
topic_facet Maschinelles Lernen
Automation
Data Science
Unternehmen
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032782321&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT larsenkair automatedmachinelearningforbusiness
AT beckerdaniels automatedmachinelearningforbusiness