Statistical design and analysis of biological experiments

This richly illustrated book provides an overview of the design and analysis of experiments with a focus on non-clinical experiments in the life sciences, including animal research. It covers the most common aspects of experimental design such as handling multiple treatment factors and improving pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kaltenbach, Hans-Michael (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cham, Switzerland Springer [2021]
Schriftenreihe:Statistics for biology and health
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV047300652
003 DE-604
005 20220221
007 t|
008 210527s2021 xx a||| |||| 00||| eng d
020 |a 9783030696405  |c hbk  |9 978-3-030-69640-5 
024 3 |a 9783030696405 
035 |a (OCoLC)1256428521 
035 |a (DE-599)BVBBV047300652 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-29T  |a DE-11 
084 |a SK 850  |0 (DE-625)143263:  |2 rvk 
084 |a WC 7600  |0 (DE-625)148143:  |2 rvk 
100 1 |a Kaltenbach, Hans-Michael  |e Verfasser  |0 (DE-588)1017565147  |4 aut 
245 1 0 |a Statistical design and analysis of biological experiments  |c Hans-Michael Kaltenbach 
264 1 |a Cham, Switzerland  |b Springer  |c [2021] 
300 |a xiv, 269 Seiten  |b Illustrationen, Diagramme  |c 583 grams 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Statistics for biology and health 
500 |a Principles of Experimental Design.- Review of Statistical Concepts.- Planning for Precision and Power.- Comparing More than Two Groups.- Comparing Treatment Groups with Linear Contrasts.- Multiple Treatment Factors: Factorial Designs.- Improving Precision and Power: Blocked Designs.- Split-Unit Designs.- Many Treatment Factors: Fractional Factorial Designs.- Experimental Optimization with Response Surface Methods.- References.- Index. 
520 |a This richly illustrated book provides an overview of the design and analysis of experiments with a focus on non-clinical experiments in the life sciences, including animal research. It covers the most common aspects of experimental design such as handling multiple treatment factors and improving precision. In addition, it addresses experiments with large numbers of treatment factors and response surface methods for optimizing experimental conditions or biotechnological yields.The book emphasizes the estimation of effect sizes and the principled use of statistical arguments in the broader scientific context. It gradually transitions from classical analysis of variance to modern linear mixed models, and provides detailed information on power analysis and sample size determination, including ‘portable power’ formulas for making quick approximate calculations. In turn, detailed discussions of several real-life examples illustrate the complexities and aberrations that can arise in practice.Chiefly intended for students, teachers and researchers in the fields of experimental biology and biomedicine, the book is largely self-contained and starts with the necessary background on basic statistical concepts. The underlying ideas and necessary mathematics are gradually introduced in increasingly complex variants of a single example. Hasse diagrams serve as a powerful method for visualizing and comparing experimental designs and deriving appropriate models for their analysis. Manual calculations are provided for early examples, allowing the reader to follow the analyses in detail. More complex calculations rely on the statistical software R, but are easily transferable to other software. Though there are few prerequisites for effectively using the book, previous exposure to basic statistical ideas and the software R would be advisable 
650 4 |a Statistics  
650 4 |a Bioinformatics 
650 4 |a Statistics 
650 0 7 |a Forschungsplanung  |0 (DE-588)4155051-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Biostatistik  |0 (DE-588)4729990-3  |2 gnd  |9 rswk-swf 
653 |a Hardcover, Softcover / Mathematik/Wahrscheinlichkeitstheorie, Stochastik, Mathematische Statistik 
689 0 0 |a Biostatistik  |0 (DE-588)4729990-3  |D s 
689 0 1 |a Forschungsplanung  |0 (DE-588)4155051-1  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-030-69641-2 
943 1 |a oai:aleph.bib-bvb.de:BVB01-032703820 

Datensatz im Suchindex

_version_ 1819310708755529730
any_adam_object
author Kaltenbach, Hans-Michael
author_GND (DE-588)1017565147
author_facet Kaltenbach, Hans-Michael
author_role aut
author_sort Kaltenbach, Hans-Michael
author_variant h m k hmk
building Verbundindex
bvnumber BV047300652
classification_rvk SK 850
WC 7600
ctrlnum (OCoLC)1256428521
(DE-599)BVBBV047300652
discipline Biologie
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03851nam a2200445 c 4500</leader><controlfield tag="001">BV047300652</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220221 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">210527s2021 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030696405</subfield><subfield code="c">hbk</subfield><subfield code="9">978-3-030-69640-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783030696405</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1256428521</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047300652</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 850</subfield><subfield code="0">(DE-625)143263:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 7600</subfield><subfield code="0">(DE-625)148143:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kaltenbach, Hans-Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1017565147</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical design and analysis of biological experiments</subfield><subfield code="c">Hans-Michael Kaltenbach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 269 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">583 grams</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Statistics for biology and health</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Principles of Experimental Design.- Review of Statistical Concepts.- Planning for Precision and Power.- Comparing More than Two Groups.- Comparing Treatment Groups with Linear Contrasts.- Multiple Treatment Factors: Factorial Designs.- Improving Precision and Power: Blocked Designs.- Split-Unit Designs.- Many Treatment Factors: Fractional Factorial Designs.- Experimental Optimization with Response Surface Methods.- References.- Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This richly illustrated book provides an overview of the design and analysis of experiments with a focus on non-clinical experiments in the life sciences, including animal research. It covers the most common aspects of experimental design such as handling multiple treatment factors and improving precision. In addition, it addresses experiments with large numbers of treatment factors and response surface methods for optimizing experimental conditions or biotechnological yields.The book emphasizes the estimation of effect sizes and the principled use of statistical arguments in the broader scientific context. It gradually transitions from classical analysis of variance to modern linear mixed models, and provides detailed information on power analysis and sample size determination, including ‘portable power’ formulas for making quick approximate calculations. In turn, detailed discussions of several real-life examples illustrate the complexities and aberrations that can arise in practice.Chiefly intended for students, teachers and researchers in the fields of experimental biology and biomedicine, the book is largely self-contained and starts with the necessary background on basic statistical concepts. The underlying ideas and necessary mathematics are gradually introduced in increasingly complex variants of a single example. Hasse diagrams serve as a powerful method for visualizing and comparing experimental designs and deriving appropriate models for their analysis. Manual calculations are provided for early examples, allowing the reader to follow the analyses in detail. More complex calculations rely on the statistical software R, but are easily transferable to other software. Though there are few prerequisites for effectively using the book, previous exposure to basic statistical ideas and the software R would be advisable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics </subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioinformatics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Forschungsplanung</subfield><subfield code="0">(DE-588)4155051-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biostatistik</subfield><subfield code="0">(DE-588)4729990-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Mathematik/Wahrscheinlichkeitstheorie, Stochastik, Mathematische Statistik</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biostatistik</subfield><subfield code="0">(DE-588)4729990-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Forschungsplanung</subfield><subfield code="0">(DE-588)4155051-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-69641-2</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032703820</subfield></datafield></record></collection>
id DE-604.BV047300652
illustrated Illustrated
indexdate 2024-12-24T08:44:48Z
institution BVB
isbn 9783030696405
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032703820
oclc_num 1256428521
open_access_boolean
owner DE-29T
DE-11
owner_facet DE-29T
DE-11
physical xiv, 269 Seiten Illustrationen, Diagramme 583 grams
publishDate 2021
publishDateSearch 2021
publishDateSort 2021
publisher Springer
record_format marc
series2 Statistics for biology and health
spelling Kaltenbach, Hans-Michael Verfasser (DE-588)1017565147 aut
Statistical design and analysis of biological experiments Hans-Michael Kaltenbach
Cham, Switzerland Springer [2021]
xiv, 269 Seiten Illustrationen, Diagramme 583 grams
txt rdacontent
n rdamedia
nc rdacarrier
Statistics for biology and health
Principles of Experimental Design.- Review of Statistical Concepts.- Planning for Precision and Power.- Comparing More than Two Groups.- Comparing Treatment Groups with Linear Contrasts.- Multiple Treatment Factors: Factorial Designs.- Improving Precision and Power: Blocked Designs.- Split-Unit Designs.- Many Treatment Factors: Fractional Factorial Designs.- Experimental Optimization with Response Surface Methods.- References.- Index.
This richly illustrated book provides an overview of the design and analysis of experiments with a focus on non-clinical experiments in the life sciences, including animal research. It covers the most common aspects of experimental design such as handling multiple treatment factors and improving precision. In addition, it addresses experiments with large numbers of treatment factors and response surface methods for optimizing experimental conditions or biotechnological yields.The book emphasizes the estimation of effect sizes and the principled use of statistical arguments in the broader scientific context. It gradually transitions from classical analysis of variance to modern linear mixed models, and provides detailed information on power analysis and sample size determination, including ‘portable power’ formulas for making quick approximate calculations. In turn, detailed discussions of several real-life examples illustrate the complexities and aberrations that can arise in practice.Chiefly intended for students, teachers and researchers in the fields of experimental biology and biomedicine, the book is largely self-contained and starts with the necessary background on basic statistical concepts. The underlying ideas and necessary mathematics are gradually introduced in increasingly complex variants of a single example. Hasse diagrams serve as a powerful method for visualizing and comparing experimental designs and deriving appropriate models for their analysis. Manual calculations are provided for early examples, allowing the reader to follow the analyses in detail. More complex calculations rely on the statistical software R, but are easily transferable to other software. Though there are few prerequisites for effectively using the book, previous exposure to basic statistical ideas and the software R would be advisable
Statistics 
Bioinformatics
Statistics
Forschungsplanung (DE-588)4155051-1 gnd rswk-swf
Biostatistik (DE-588)4729990-3 gnd rswk-swf
Hardcover, Softcover / Mathematik/Wahrscheinlichkeitstheorie, Stochastik, Mathematische Statistik
Biostatistik (DE-588)4729990-3 s
Forschungsplanung (DE-588)4155051-1 s
DE-604
Erscheint auch als Online-Ausgabe 978-3-030-69641-2
spellingShingle Kaltenbach, Hans-Michael
Statistical design and analysis of biological experiments
Statistics 
Bioinformatics
Statistics
Forschungsplanung (DE-588)4155051-1 gnd
Biostatistik (DE-588)4729990-3 gnd
subject_GND (DE-588)4155051-1
(DE-588)4729990-3
title Statistical design and analysis of biological experiments
title_auth Statistical design and analysis of biological experiments
title_exact_search Statistical design and analysis of biological experiments
title_full Statistical design and analysis of biological experiments Hans-Michael Kaltenbach
title_fullStr Statistical design and analysis of biological experiments Hans-Michael Kaltenbach
title_full_unstemmed Statistical design and analysis of biological experiments Hans-Michael Kaltenbach
title_short Statistical design and analysis of biological experiments
title_sort statistical design and analysis of biological experiments
topic Statistics 
Bioinformatics
Statistics
Forschungsplanung (DE-588)4155051-1 gnd
Biostatistik (DE-588)4729990-3 gnd
topic_facet Statistics 
Bioinformatics
Statistics
Forschungsplanung
Biostatistik
work_keys_str_mv AT kaltenbachhansmichael statisticaldesignandanalysisofbiologicalexperiments