The Berge equilibrium a game-theoretic framework for the golden rule of ethics

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Salukvadze, M. E. 1933- (VerfasserIn), Zhukovskii, Vladislav Iosifovich (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cham Birkhäuser [2020]
Schriftenreihe:Static & dynamic game theory: foundations & applications
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV047258355
003 DE-604
005 20221123
007 t|
008 210428s2020 xx a||| |||| 00||| eng d
020 |a 9783030255459  |9 978-3-030-25545-9 
035 |a (OCoLC)1151313265 
035 |a (DE-599)BVBBV047258355 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-355  |a DE-11 
082 0 |a 519  |2 23 
084 |a QH 430  |0 (DE-625)141581:  |2 rvk 
084 |a SK 660  |0 (DE-625)143251:  |2 rvk 
084 |a SK 860  |0 (DE-625)143264:  |2 rvk 
100 1 |a Salukvadze, M. E.  |d 1933-  |e Verfasser  |0 (DE-588)1206884819  |4 aut 
245 1 0 |a The Berge equilibrium  |b a game-theoretic framework for the golden rule of ethics  |c Mindia E. Salukvadze, Vladislav I. Zhukovskiy 
264 1 |a Cham  |b Birkhäuser  |c [2020] 
264 4 |c © 2020 
300 |a xxvi, 272 Seiten  |b Illustrationen 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Static & dynamic game theory: foundations & applications  |x 2363-8516 
650 4 |a Game Theory, Economics, Social and Behav. Sciences 
650 4 |a Operations Research, Management Science 
650 4 |a Calculus of Variations and Optimal Control; Optimization 
650 4 |a Game theory 
650 4 |a Operations research 
650 4 |a Management science 
650 4 |a Calculus of variations 
700 1 |a Zhukovskii, Vladislav Iosifovich  |e Verfasser  |0 (DE-588)1067826157  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-030-25546-6 
856 4 2 |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032662272&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-032662272 

Datensatz im Suchindex

DE-BY-UBR_call_number 40/QH 430 S181
DE-BY-UBR_katkey 6401871
DE-BY-UBR_location 40
DE-BY-UBR_media_number 069043555067
_version_ 1822754632899756032
adam_text Contents 1 What Is the Golden Rule of Ethics? .......................................................... 1.1 Scribitur ad narrandum, non ad probandum....................................... 1.2 World Religions About the Golden Rule........................................... 1.3 The Golden Rule and Philosophy........................................................ 1.4 What Does the Golden Rule Suggest?................................................ 1.5 The Golden Rule as the Key Principle of Social Life........................ 1.6 Moral Decline of Modern Society..................................................... 1.7 The Golden Rule and Policy.............................................................. 1.8 Is Ethical Policy Possible?................................................................. 1 1 2 4 5 7 10 12 13 2 Static Case of the Golden Rule................................................................... 2.1 What is the Content of the Golden Rule?............................................ 2.2 Main Notions...................................................................................... 2.2.1 Preliminaries......................................................................... 2.2.2 Elements of the Mathematical Model.................................. 2.2.3 Nash Equilibrium................................................................. 2.2.4 Berge Equilibrium........................................ 2.3 Compactness of the Set XB................................................................ 2.4 Internal Instability of the Set Xs ....................................................... 2.5 No Guaranteed Individual Rationality of the Set XB ....................... 2.6 Two-Player Game................................................................................ 2.7 Comparison of Nash and Berge Equilibria...................... 2.8 Sufficient Conditions.......................................................................... 2.8.1 Continuity of the Maximum Function of a Finite Number of Continuous Functions........................................ 2.8.2 Reduction to Saddle Point Design ...................................... 2.8.3 Germeier Convolution.......................................................... 2.9 Mixed Extension of a Noncooperative Game................................... 2.9.1 Mixed Strategies and Mixed Extension of a Game............ 2.9.2 Préambule............................................................................. 2.9.3 Existence Theorem................................................................ 17 17 18 18 21 25 27 28 30 32 34 36 37 37 38 40 44 44 47 48 xxiii xxiv 3 4 Contents 2.10 Linear-Quadratic Two-Player Game................................................... 2.10.1 Preliminaries......................................................................... 2.10.2 Berge Equilibrium................................................................ 2.10.3 Nash Equilibrium................................................................. 2.10.4 Auxiliary Lemma................................................................. 2.10.5 Concluding Remarks............................................................. 51 52 53 55 56 58 The Golden Rule Under Uncertainty................. ..................................... 3.1 Uncertainty and Types of Uncertainty................................................ 3.1.1 Conceptual Meaning of Uncertainty................................... 3.1.2 Uncertainty in Economic Systems...................................... 3.1.3 Uncertainty in Mechanical Control Systems ..................... 3.1.4 Uncertainty in Decision-Making......................................... *3.1.5 Classification of Uncontrolled Factors................................. 3.1.6 Classification of Uncertainty................................................ 3.2 General Notions and Obtained Results.............................................. 3.2.1 Saddle point and maximin.................................................... 3.2.2 Auxiliary Results from Operations Research, Theory of Multicriteria Choice and Game Theory............ 3.3 Balanced Equilibrium as an Analog of Saddle Point....................... 3.3.1 Analogs of Saddle Point: The Idea and Formalization...... 3.3.2 Pro et contra of Balanced Equilibrium................................ 3.3.3 Games with Separated Payoff Functions............................. 3.3.4 Existence in Mixed Strategies and One Remark................. 3.4 Strongly-Guaranteed Berge Equilibrium........................................... 3.4.1 Introduction........................................................................... 3.4.2 Maximin and Its Interpretation Using Two-Level Game... 3.4.3 Drawback of Balanced Equilibrium as Solution of Noncooperative Game Under Uncertainty..................... 3.4.4 Formalization......................................................................... 3.4.5 Existence in Mixed Strategies.............................................. 3.4.6 Linear-Quadratic Setup of Game......................................... 3.5 Slater-Guaranteed Equilibria.............................................................. 3.5.1 Definition and Properties.............................. 3.5.2 Existence of Guaranteed Equilibrium in Mixed Strategies................................ 3.5.3 Existence Theorem................................................................ 61 61 62 62 63 64 64 65 69 69 Applications to Competitive Economic Models........................................ 4.1 The Cournot Oligopoly Model............................................................ 4.1.1 Introduction ........................................................................... 4.1.2 Basic Notations and Definitions........................................... 4.1.3 The Cournot Oligopoly and Equilibrium Strategies........... 4.1.4 Comparison of Payoffs: Berge Equilibrium vs. Nash Equilibrium ........................................................... 70 76 76 78 79 85 87 88 88 90 91 96 102 108 108 Ill 115 119 119 120 121 122 126 xxv Contents 4.2 4.3 4.4 5 The Cournot Duopoly with Import.................................................... 4.2.1 Mathematical Model............................................................. 4.2.2 Strongly-Guaranteed Equilibrium............... ....................... 4.2.3 Pareto-Guaranteed Equilibrium.......................................... The Bertrand Duopoly Model............................................................ 4.3.1 Mathematical Model............ ................................................ 4.3.2 Main Notions......................................................................... 4.3.3 Explicit Design of Berge and Nash Equilibria.................... 4.3.4 Use of Berge Equilibrium...... ............................................. 4.3.5 Choice of Appropriate Equilibrium on the Boundaries of the Constructed Domains................. 4.3.6 Compromising Behavioral Principles for Higher Benefits................................................................ The Bertrand Model with Import....................................................... 4.4.1 Mathematical Model............................................................. 4.4.2 Consideration of Import....................................................... 4.4.3 Calculation of Inner Pareto Minimum................................ 4.4.4 Design of Nash Equilibrium................................................. 4.4.5 Calculation of the Corresponding Profits............... ............ New Approaches to the Solution of Noncooperative Games and Multicriteria Choice Problems........................................................... 5.1 A New Approach to Optimal Solutions of Multicriteria Choice Problems: Consideration of Savage-Niehans Risk.............. 5.1.1 The Savage-Niehans Principle of Minimax Regret........... 5.1.2 Strong Guarantees and Transition from Гс to 2/V-Criteria Choice Problem...................................... 5.1.3 Formalization of a Guaranteed Solution in Outcomes and Risks for Problem Гс..................................................... 5.1.4 Risks and Outcomes for Diversification of a Deposit into Sub-deposits in Different Currencies .......................... 5.2 A New Approach to Optimal Solutions of Noncooperative Games: Accounting for Savage-Niehans Risk.................................. 5.2.1 Principia Universalia............................................................. 5.2.2 How Can We Combine the Objectives of Each Player to Increase the Payoff and Simultaneously Reduce the Risk?................................................................... 5.2.3 Formalization of Guaranteed Equilibrium in Payoffs and Risks for Game (5.2.1).................................................. 5.2.4 Existence of Pareto Equilibrium in Mixed Strategies........ 5.2.5 De omni re scibili et quibusdam aliis................... 5.2.6 A la fin des fins........................................ 5.3 Cooperation in a Conflict of N Persons Under Uncertainty............ 5.3.1 Introduction.......................................................................... 5.3.2 Game of Guarantees........................................................... 131 131 133 137 142 143 144 146 148 157 162 164 164 166 168 169 172 175 175 177 178 180 184 191 191 193 198 206 211 214 214 215 216 xxvi Contents 5.3.3 5.3.4 5.3.5 5.4 6 Coalitional Equilibrium........................................................ Sufficient Condition.............................................................. Existence of Coalitional Equilibrium in Mixed Strategies............................................................................... 5.3.6 Concluding Remarks.......................................... How Can One Combine the Altruism of Berge Equilibrium with the Selfishness of Nash Equilibrium? Hybrid Equilibrium .... 5.4.1 Introduction.......................................................................... 5.4.2 Formalization of Hybrid Equilibrium................................. 5.4.3 Properties of Hybrid Equilibria............................................ 5.4.4 Sufficient Conditions .......... 5.4.5 Existence of Pareto Hybrid Equilibrium in Mixed Strategies............................................................................... 5.4.6 Hybrid Equilibrium in Games Under Uncertainty.............. Conclusion........................ 216 217 218 224 225 225 226 228 230 232 239 245 Short Biographies................................................................................................ 251 References............................................................................................................. 259
any_adam_object 1
author Salukvadze, M. E. 1933-
Zhukovskii, Vladislav Iosifovich
author_GND (DE-588)1206884819
(DE-588)1067826157
author_facet Salukvadze, M. E. 1933-
Zhukovskii, Vladislav Iosifovich
author_role aut
aut
author_sort Salukvadze, M. E. 1933-
author_variant m e s me mes
v i z vi viz
building Verbundindex
bvnumber BV047258355
classification_rvk QH 430
SK 660
SK 860
ctrlnum (OCoLC)1151313265
(DE-599)BVBBV047258355
dewey-full 519
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519
dewey-search 519
dewey-sort 3519
dewey-tens 510 - Mathematics
discipline Mathematik
Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01870nam a2200445 c 4500</leader><controlfield tag="001">BV047258355</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221123 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">210428s2020 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030255459</subfield><subfield code="9">978-3-030-25545-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1151313265</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047258355</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 430</subfield><subfield code="0">(DE-625)141581:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 660</subfield><subfield code="0">(DE-625)143251:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 860</subfield><subfield code="0">(DE-625)143264:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Salukvadze, M. E.</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1206884819</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Berge equilibrium</subfield><subfield code="b">a game-theoretic framework for the golden rule of ethics</subfield><subfield code="c">Mindia E. Salukvadze, Vladislav I. Zhukovskiy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxvi, 272 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Static &amp; dynamic game theory: foundations &amp; applications</subfield><subfield code="x">2363-8516</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Game Theory, Economics, Social and Behav. Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research, Management Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Game theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Management science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhukovskii, Vladislav Iosifovich</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1067826157</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-25546-6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=032662272&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032662272</subfield></datafield></record></collection>
id DE-604.BV047258355
illustrated Illustrated
indexdate 2024-12-24T08:42:42Z
institution BVB
isbn 9783030255459
issn 2363-8516
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032662272
oclc_num 1151313265
open_access_boolean
owner DE-355
DE-BY-UBR
DE-11
owner_facet DE-355
DE-BY-UBR
DE-11
physical xxvi, 272 Seiten Illustrationen
publishDate 2020
publishDateSearch 2020
publishDateSort 2020
publisher Birkhäuser
record_format marc
series2 Static & dynamic game theory: foundations & applications
spellingShingle Salukvadze, M. E. 1933-
Zhukovskii, Vladislav Iosifovich
The Berge equilibrium a game-theoretic framework for the golden rule of ethics
Game Theory, Economics, Social and Behav. Sciences
Operations Research, Management Science
Calculus of Variations and Optimal Control; Optimization
Game theory
Operations research
Management science
Calculus of variations
title The Berge equilibrium a game-theoretic framework for the golden rule of ethics
title_auth The Berge equilibrium a game-theoretic framework for the golden rule of ethics
title_exact_search The Berge equilibrium a game-theoretic framework for the golden rule of ethics
title_full The Berge equilibrium a game-theoretic framework for the golden rule of ethics Mindia E. Salukvadze, Vladislav I. Zhukovskiy
title_fullStr The Berge equilibrium a game-theoretic framework for the golden rule of ethics Mindia E. Salukvadze, Vladislav I. Zhukovskiy
title_full_unstemmed The Berge equilibrium a game-theoretic framework for the golden rule of ethics Mindia E. Salukvadze, Vladislav I. Zhukovskiy
title_short The Berge equilibrium
title_sort the berge equilibrium a game theoretic framework for the golden rule of ethics
title_sub a game-theoretic framework for the golden rule of ethics
topic Game Theory, Economics, Social and Behav. Sciences
Operations Research, Management Science
Calculus of Variations and Optimal Control; Optimization
Game theory
Operations research
Management science
Calculus of variations
topic_facet Game Theory, Economics, Social and Behav. Sciences
Operations Research, Management Science
Calculus of Variations and Optimal Control; Optimization
Game theory
Operations research
Management science
Calculus of variations
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032662272&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT salukvadzeme thebergeequilibriumagametheoreticframeworkforthegoldenruleofethics
AT zhukovskiivladislaviosifovich thebergeequilibriumagametheoreticframeworkforthegoldenruleofethics