The Berge equilibrium a game-theoretic framework for the golden rule of ethics
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Birkhäuser
[2020]
|
Schriftenreihe: | Static & dynamic game theory: foundations & applications
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047258355 | ||
003 | DE-604 | ||
005 | 20221123 | ||
007 | t| | ||
008 | 210428s2020 xx a||| |||| 00||| eng d | ||
020 | |a 9783030255459 |9 978-3-030-25545-9 | ||
035 | |a (OCoLC)1151313265 | ||
035 | |a (DE-599)BVBBV047258355 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-11 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a QH 430 |0 (DE-625)141581: |2 rvk | ||
084 | |a SK 660 |0 (DE-625)143251: |2 rvk | ||
084 | |a SK 860 |0 (DE-625)143264: |2 rvk | ||
100 | 1 | |a Salukvadze, M. E. |d 1933- |e Verfasser |0 (DE-588)1206884819 |4 aut | |
245 | 1 | 0 | |a The Berge equilibrium |b a game-theoretic framework for the golden rule of ethics |c Mindia E. Salukvadze, Vladislav I. Zhukovskiy |
264 | 1 | |a Cham |b Birkhäuser |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a xxvi, 272 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Static & dynamic game theory: foundations & applications |x 2363-8516 | |
650 | 4 | |a Game Theory, Economics, Social and Behav. Sciences | |
650 | 4 | |a Operations Research, Management Science | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Game theory | |
650 | 4 | |a Operations research | |
650 | 4 | |a Management science | |
650 | 4 | |a Calculus of variations | |
700 | 1 | |a Zhukovskii, Vladislav Iosifovich |e Verfasser |0 (DE-588)1067826157 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-030-25546-6 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032662272&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032662272 |
Datensatz im Suchindex
DE-BY-UBR_call_number | 40/QH 430 S181 |
---|---|
DE-BY-UBR_katkey | 6401871 |
DE-BY-UBR_location | 40 |
DE-BY-UBR_media_number | 069043555067 |
_version_ | 1822754632899756032 |
adam_text | Contents 1 What Is the Golden Rule of Ethics? .......................................................... 1.1 Scribitur ad narrandum, non ad probandum....................................... 1.2 World Religions About the Golden Rule........................................... 1.3 The Golden Rule and Philosophy........................................................ 1.4 What Does the Golden Rule Suggest?................................................ 1.5 The Golden Rule as the Key Principle of Social Life........................ 1.6 Moral Decline of Modern Society..................................................... 1.7 The Golden Rule and Policy.............................................................. 1.8 Is Ethical Policy Possible?................................................................. 1 1 2 4 5 7 10 12 13 2 Static Case of the Golden Rule................................................................... 2.1 What is the Content of the Golden Rule?............................................ 2.2 Main Notions...................................................................................... 2.2.1 Preliminaries......................................................................... 2.2.2 Elements of the Mathematical Model.................................. 2.2.3 Nash Equilibrium................................................................. 2.2.4 Berge Equilibrium........................................ 2.3 Compactness of the Set XB................................................................ 2.4 Internal Instability of the Set Xs
....................................................... 2.5 No Guaranteed Individual Rationality of the Set XB ....................... 2.6 Two-Player Game................................................................................ 2.7 Comparison of Nash and Berge Equilibria...................... 2.8 Sufficient Conditions.......................................................................... 2.8.1 Continuity of the Maximum Function of a Finite Number of Continuous Functions........................................ 2.8.2 Reduction to Saddle Point Design ...................................... 2.8.3 Germeier Convolution.......................................................... 2.9 Mixed Extension of a Noncooperative Game................................... 2.9.1 Mixed Strategies and Mixed Extension of a Game............ 2.9.2 Préambule............................................................................. 2.9.3 Existence Theorem................................................................ 17 17 18 18 21 25 27 28 30 32 34 36 37 37 38 40 44 44 47 48 xxiii
xxiv 3 4 Contents 2.10 Linear-Quadratic Two-Player Game................................................... 2.10.1 Preliminaries......................................................................... 2.10.2 Berge Equilibrium................................................................ 2.10.3 Nash Equilibrium................................................................. 2.10.4 Auxiliary Lemma................................................................. 2.10.5 Concluding Remarks............................................................. 51 52 53 55 56 58 The Golden Rule Under Uncertainty................. ..................................... 3.1 Uncertainty and Types of Uncertainty................................................ 3.1.1 Conceptual Meaning of Uncertainty................................... 3.1.2 Uncertainty in Economic Systems...................................... 3.1.3 Uncertainty in Mechanical Control Systems ..................... 3.1.4 Uncertainty in Decision-Making......................................... *3.1.5 Classification of Uncontrolled Factors................................. 3.1.6 Classification of Uncertainty................................................ 3.2 General Notions and Obtained Results.............................................. 3.2.1 Saddle point and maximin.................................................... 3.2.2 Auxiliary Results from Operations Research, Theory of Multicriteria Choice and Game Theory............ 3.3 Balanced Equilibrium as an Analog of Saddle Point....................... 3.3.1 Analogs of Saddle Point:
The Idea and Formalization...... 3.3.2 Pro et contra of Balanced Equilibrium................................ 3.3.3 Games with Separated Payoff Functions............................. 3.3.4 Existence in Mixed Strategies and One Remark................. 3.4 Strongly-Guaranteed Berge Equilibrium........................................... 3.4.1 Introduction........................................................................... 3.4.2 Maximin and Its Interpretation Using Two-Level Game... 3.4.3 Drawback of Balanced Equilibrium as Solution of Noncooperative Game Under Uncertainty..................... 3.4.4 Formalization......................................................................... 3.4.5 Existence in Mixed Strategies.............................................. 3.4.6 Linear-Quadratic Setup of Game......................................... 3.5 Slater-Guaranteed Equilibria.............................................................. 3.5.1 Definition and Properties.............................. 3.5.2 Existence of Guaranteed Equilibrium in Mixed Strategies................................ 3.5.3 Existence Theorem................................................................ 61 61 62 62 63 64 64 65 69 69 Applications to Competitive Economic Models........................................ 4.1 The Cournot Oligopoly Model............................................................ 4.1.1 Introduction ........................................................................... 4.1.2 Basic Notations and Definitions........................................... 4.1.3 The Cournot
Oligopoly and Equilibrium Strategies........... 4.1.4 Comparison of Payoffs: Berge Equilibrium vs. Nash Equilibrium ........................................................... 70 76 76 78 79 85 87 88 88 90 91 96 102 108 108 Ill 115 119 119 120 121 122 126
xxv Contents 4.2 4.3 4.4 5 The Cournot Duopoly with Import.................................................... 4.2.1 Mathematical Model............................................................. 4.2.2 Strongly-Guaranteed Equilibrium............... ....................... 4.2.3 Pareto-Guaranteed Equilibrium.......................................... The Bertrand Duopoly Model............................................................ 4.3.1 Mathematical Model............ ................................................ 4.3.2 Main Notions......................................................................... 4.3.3 Explicit Design of Berge and Nash Equilibria.................... 4.3.4 Use of Berge Equilibrium...... ............................................. 4.3.5 Choice of Appropriate Equilibrium on the Boundaries of the Constructed Domains................. 4.3.6 Compromising Behavioral Principles for Higher Benefits................................................................ The Bertrand Model with Import....................................................... 4.4.1 Mathematical Model............................................................. 4.4.2 Consideration of Import....................................................... 4.4.3 Calculation of Inner Pareto Minimum................................ 4.4.4 Design of Nash Equilibrium................................................. 4.4.5 Calculation of the Corresponding Profits............... ............ New Approaches to the Solution of Noncooperative Games and Multicriteria Choice
Problems........................................................... 5.1 A New Approach to Optimal Solutions of Multicriteria Choice Problems: Consideration of Savage-Niehans Risk.............. 5.1.1 The Savage-Niehans Principle of Minimax Regret........... 5.1.2 Strong Guarantees and Transition from Гс to 2/V-Criteria Choice Problem...................................... 5.1.3 Formalization of a Guaranteed Solution in Outcomes and Risks for Problem Гс..................................................... 5.1.4 Risks and Outcomes for Diversification of a Deposit into Sub-deposits in Different Currencies .......................... 5.2 A New Approach to Optimal Solutions of Noncooperative Games: Accounting for Savage-Niehans Risk.................................. 5.2.1 Principia Universalia............................................................. 5.2.2 How Can We Combine the Objectives of Each Player to Increase the Payoff and Simultaneously Reduce the Risk?................................................................... 5.2.3 Formalization of Guaranteed Equilibrium in Payoffs and Risks for Game (5.2.1).................................................. 5.2.4 Existence of Pareto Equilibrium in Mixed Strategies........ 5.2.5 De omni re scibili et quibusdam aliis................... 5.2.6 A la fin des fins........................................ 5.3 Cooperation in a Conflict of N Persons Under Uncertainty............ 5.3.1 Introduction.......................................................................... 5.3.2 Game of
Guarantees........................................................... 131 131 133 137 142 143 144 146 148 157 162 164 164 166 168 169 172 175 175 177 178 180 184 191 191 193 198 206 211 214 214 215 216
xxvi Contents 5.3.3 5.3.4 5.3.5 5.4 6 Coalitional Equilibrium........................................................ Sufficient Condition.............................................................. Existence of Coalitional Equilibrium in Mixed Strategies............................................................................... 5.3.6 Concluding Remarks.......................................... How Can One Combine the Altruism of Berge Equilibrium with the Selfishness of Nash Equilibrium? Hybrid Equilibrium .... 5.4.1 Introduction.......................................................................... 5.4.2 Formalization of Hybrid Equilibrium................................. 5.4.3 Properties of Hybrid Equilibria............................................ 5.4.4 Sufficient Conditions .......... 5.4.5 Existence of Pareto Hybrid Equilibrium in Mixed Strategies............................................................................... 5.4.6 Hybrid Equilibrium in Games Under Uncertainty.............. Conclusion........................ 216 217 218 224 225 225 226 228 230 232 239 245 Short Biographies................................................................................................ 251 References............................................................................................................. 259
|
any_adam_object | 1 |
author | Salukvadze, M. E. 1933- Zhukovskii, Vladislav Iosifovich |
author_GND | (DE-588)1206884819 (DE-588)1067826157 |
author_facet | Salukvadze, M. E. 1933- Zhukovskii, Vladislav Iosifovich |
author_role | aut aut |
author_sort | Salukvadze, M. E. 1933- |
author_variant | m e s me mes v i z vi viz |
building | Verbundindex |
bvnumber | BV047258355 |
classification_rvk | QH 430 SK 660 SK 860 |
ctrlnum | (OCoLC)1151313265 (DE-599)BVBBV047258355 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01870nam a2200445 c 4500</leader><controlfield tag="001">BV047258355</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221123 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">210428s2020 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030255459</subfield><subfield code="9">978-3-030-25545-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1151313265</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047258355</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 430</subfield><subfield code="0">(DE-625)141581:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 660</subfield><subfield code="0">(DE-625)143251:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 860</subfield><subfield code="0">(DE-625)143264:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Salukvadze, M. E.</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1206884819</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Berge equilibrium</subfield><subfield code="b">a game-theoretic framework for the golden rule of ethics</subfield><subfield code="c">Mindia E. Salukvadze, Vladislav I. Zhukovskiy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxvi, 272 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Static & dynamic game theory: foundations & applications</subfield><subfield code="x">2363-8516</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Game Theory, Economics, Social and Behav. Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research, Management Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Game theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Management science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhukovskii, Vladislav Iosifovich</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1067826157</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-25546-6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032662272&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032662272</subfield></datafield></record></collection> |
id | DE-604.BV047258355 |
illustrated | Illustrated |
indexdate | 2024-12-24T08:42:42Z |
institution | BVB |
isbn | 9783030255459 |
issn | 2363-8516 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032662272 |
oclc_num | 1151313265 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-11 |
physical | xxvi, 272 Seiten Illustrationen |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Birkhäuser |
record_format | marc |
series2 | Static & dynamic game theory: foundations & applications |
spellingShingle | Salukvadze, M. E. 1933- Zhukovskii, Vladislav Iosifovich The Berge equilibrium a game-theoretic framework for the golden rule of ethics Game Theory, Economics, Social and Behav. Sciences Operations Research, Management Science Calculus of Variations and Optimal Control; Optimization Game theory Operations research Management science Calculus of variations |
title | The Berge equilibrium a game-theoretic framework for the golden rule of ethics |
title_auth | The Berge equilibrium a game-theoretic framework for the golden rule of ethics |
title_exact_search | The Berge equilibrium a game-theoretic framework for the golden rule of ethics |
title_full | The Berge equilibrium a game-theoretic framework for the golden rule of ethics Mindia E. Salukvadze, Vladislav I. Zhukovskiy |
title_fullStr | The Berge equilibrium a game-theoretic framework for the golden rule of ethics Mindia E. Salukvadze, Vladislav I. Zhukovskiy |
title_full_unstemmed | The Berge equilibrium a game-theoretic framework for the golden rule of ethics Mindia E. Salukvadze, Vladislav I. Zhukovskiy |
title_short | The Berge equilibrium |
title_sort | the berge equilibrium a game theoretic framework for the golden rule of ethics |
title_sub | a game-theoretic framework for the golden rule of ethics |
topic | Game Theory, Economics, Social and Behav. Sciences Operations Research, Management Science Calculus of Variations and Optimal Control; Optimization Game theory Operations research Management science Calculus of variations |
topic_facet | Game Theory, Economics, Social and Behav. Sciences Operations Research, Management Science Calculus of Variations and Optimal Control; Optimization Game theory Operations research Management science Calculus of variations |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032662272&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT salukvadzeme thebergeequilibriumagametheoreticframeworkforthegoldenruleofethics AT zhukovskiivladislaviosifovich thebergeequilibriumagametheoreticframeworkforthegoldenruleofethics |