The reinforcement learning workshop learn how to apply cutting-edge reinforcement learning algorithms to a wide range of control problems

bStart with the basics of reinforcement learning and explore deep learning concepts such as deep Q-learning, deep recurrent Q-networks, and policy-based methods with this practical guide/b h4Key Features/h4 ul liUse TensorFlow to write reinforcement learning agents for performing challenging tasks/l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Palmas, Alessandro (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Birmingham Packt Publishing Limited 2020
Schlagworte:
Online-Zugang:DE-526
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV047070142
003 DE-604
005 20230503
007 cr|uuu---uuuuu
008 201218s2020 xx o|||| 00||| eng d
020 |a 9781800209961  |9 978-1-80020-996-1 
035 |a (ZDB-5-WPSE)9781800209961822 
035 |a (OCoLC)1227477249 
035 |a (DE-599)BVBBV047070142 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-526 
084 |a ST 300  |0 (DE-625)143650:  |2 rvk 
100 1 |a Palmas, Alessandro  |e Verfasser  |4 aut 
245 1 0 |a The reinforcement learning workshop  |b learn how to apply cutting-edge reinforcement learning algorithms to a wide range of control problems  |c Alessandro Palmas 
264 1 |a Birmingham  |b Packt Publishing Limited  |c 2020 
300 |a 1 Online-Ressource (822 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
520 |a bStart with the basics of reinforcement learning and explore deep learning concepts such as deep Q-learning, deep recurrent Q-networks, and policy-based methods with this practical guide/b h4Key Features/h4 ul liUse TensorFlow to write reinforcement learning agents for performing challenging tasks/li liLearn how to solve finite Markov decision problems/li liTrain models to understand popular video games like Breakout/li /ul h4Book Description/h4 Various intelligent applications such as video games, inventory management software, warehouse robots, and translation tools use reinforcement learning (RL) to make decisions and perform actions that maximize the probability of the desired outcome. This book will help you to get to grips with the techniques and the algorithms for implementing RL in your machine learning models. Starting with an introduction to RL, you'll be guided through different RL environments and frameworks. 
520 |a You'll learn how to implement your own custom environments and use OpenAI baselines to run RL algorithms. Once you've explored classic RL techniques such as Dynamic Programming, Monte Carlo, and TD Learning, you'll understand when to apply the different deep learning methods in RL and advance to deep Q-learning. The book will even help you understand the different stages of machine-based problem-solving by using DARQN on a popular video game Breakout. Finally, you'll find out when to use a policy-based method to tackle an RL problem. By the end of The Reinforcement Learning Workshop, you'll be equipped with the knowledge and skills needed to solve challenging problems using reinforcement learning. 
520 |a h4What you will learn/h4 ul liUse OpenAI Gym as a framework to implement RL environments/li liFind out how to define and implement reward function/li liExplore Markov chain, Markov decision process, and the Bellman equation/li liDistinguish between Dynamic Programming, Monte Carlo, and Temporal Difference Learning/li liUnderstand the multi-armed bandit problem and explore various strategies to solve it/li liBuild a deep Q model network for playing the video game Breakout/li /ul h4Who this book is for/h4 If you are a data scientist, machine learning enthusiast, or a Python developer who wants to learn basic to advanced deep reinforcement learning algorithms, this workshop is for you. A basic understanding of the Python language is necessary 
650 4 |a COMPUTERS / Intelligence (AI) &amp 
650 4 |a Semantics 
650 4 |a COMPUTERS / Neural Networks 
700 1 |a Ghelfi, Emanuele  |e Sonstige  |4 oth 
700 1 |a Petre, Dr. Alexandra Galina  |e Sonstige  |4 oth 
700 1 |a Kulkarni, Mayur  |e Sonstige  |4 oth 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781800200456 
912 |a ZDB-5-WPSE 
912 |a ZDB-30-PQE 
943 1 |a oai:aleph.bib-bvb.de:BVB01-032477168 
966 e |u https://ebookcentral.proquest.com/lib/th-wildau/detail.action?docID=6318341  |l DE-526  |p ZDB-30-PQE  |q BTW_PDA_PQE_KAUF  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1822410701141966848
adam_text
any_adam_object
author Palmas, Alessandro
author_facet Palmas, Alessandro
author_role aut
author_sort Palmas, Alessandro
author_variant a p ap
building Verbundindex
bvnumber BV047070142
classification_rvk ST 300
collection ZDB-5-WPSE
ZDB-30-PQE
ctrlnum (ZDB-5-WPSE)9781800209961822
(OCoLC)1227477249
(DE-599)BVBBV047070142
discipline Informatik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047070142</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230503</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201218s2020 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781800209961</subfield><subfield code="9">978-1-80020-996-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-5-WPSE)9781800209961822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227477249</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047070142</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-526</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Palmas, Alessandro</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The reinforcement learning workshop</subfield><subfield code="b">learn how to apply cutting-edge reinforcement learning algorithms to a wide range of control problems</subfield><subfield code="c">Alessandro Palmas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing Limited</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (822 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">bStart with the basics of reinforcement learning and explore deep learning concepts such as deep Q-learning, deep recurrent Q-networks, and policy-based methods with this practical guide/b h4Key Features/h4 ul liUse TensorFlow to write reinforcement learning agents for performing challenging tasks/li liLearn how to solve finite Markov decision problems/li liTrain models to understand popular video games like Breakout/li /ul h4Book Description/h4 Various intelligent applications such as video games, inventory management software, warehouse robots, and translation tools use reinforcement learning (RL) to make decisions and perform actions that maximize the probability of the desired outcome. This book will help you to get to grips with the techniques and the algorithms for implementing RL in your machine learning models. Starting with an introduction to RL, you'll be guided through different RL environments and frameworks.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">You'll learn how to implement your own custom environments and use OpenAI baselines to run RL algorithms. Once you've explored classic RL techniques such as Dynamic Programming, Monte Carlo, and TD Learning, you'll understand when to apply the different deep learning methods in RL and advance to deep Q-learning. The book will even help you understand the different stages of machine-based problem-solving by using DARQN on a popular video game Breakout. Finally, you'll find out when to use a policy-based method to tackle an RL problem. By the end of The Reinforcement Learning Workshop, you'll be equipped with the knowledge and skills needed to solve challenging problems using reinforcement learning.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">h4What you will learn/h4 ul liUse OpenAI Gym as a framework to implement RL environments/li liFind out how to define and implement reward function/li liExplore Markov chain, Markov decision process, and the Bellman equation/li liDistinguish between Dynamic Programming, Monte Carlo, and Temporal Difference Learning/li liUnderstand the multi-armed bandit problem and explore various strategies to solve it/li liBuild a deep Q model network for playing the video game Breakout/li /ul h4Who this book is for/h4 If you are a data scientist, machine learning enthusiast, or a Python developer who wants to learn basic to advanced deep reinforcement learning algorithms, this workshop is for you. A basic understanding of the Python language is necessary</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS / Intelligence (AI) &amp;amp</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semantics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS / Neural Networks</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghelfi, Emanuele</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petre, Dr. Alexandra Galina</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kulkarni, Mayur</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781800200456</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-5-WPSE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032477168</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-wildau/detail.action?docID=6318341</subfield><subfield code="l">DE-526</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">BTW_PDA_PQE_KAUF</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV047070142
illustrated Not Illustrated
indexdate 2025-01-27T13:57:57Z
institution BVB
isbn 9781800209961
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032477168
oclc_num 1227477249
open_access_boolean
owner DE-526
owner_facet DE-526
physical 1 Online-Ressource (822 Seiten)
psigel ZDB-5-WPSE
ZDB-30-PQE
ZDB-30-PQE BTW_PDA_PQE_KAUF
publishDate 2020
publishDateSearch 2020
publishDateSort 2020
publisher Packt Publishing Limited
record_format marc
spelling Palmas, Alessandro Verfasser aut
The reinforcement learning workshop learn how to apply cutting-edge reinforcement learning algorithms to a wide range of control problems Alessandro Palmas
Birmingham Packt Publishing Limited 2020
1 Online-Ressource (822 Seiten)
txt rdacontent
c rdamedia
cr rdacarrier
bStart with the basics of reinforcement learning and explore deep learning concepts such as deep Q-learning, deep recurrent Q-networks, and policy-based methods with this practical guide/b h4Key Features/h4 ul liUse TensorFlow to write reinforcement learning agents for performing challenging tasks/li liLearn how to solve finite Markov decision problems/li liTrain models to understand popular video games like Breakout/li /ul h4Book Description/h4 Various intelligent applications such as video games, inventory management software, warehouse robots, and translation tools use reinforcement learning (RL) to make decisions and perform actions that maximize the probability of the desired outcome. This book will help you to get to grips with the techniques and the algorithms for implementing RL in your machine learning models. Starting with an introduction to RL, you'll be guided through different RL environments and frameworks.
You'll learn how to implement your own custom environments and use OpenAI baselines to run RL algorithms. Once you've explored classic RL techniques such as Dynamic Programming, Monte Carlo, and TD Learning, you'll understand when to apply the different deep learning methods in RL and advance to deep Q-learning. The book will even help you understand the different stages of machine-based problem-solving by using DARQN on a popular video game Breakout. Finally, you'll find out when to use a policy-based method to tackle an RL problem. By the end of The Reinforcement Learning Workshop, you'll be equipped with the knowledge and skills needed to solve challenging problems using reinforcement learning.
h4What you will learn/h4 ul liUse OpenAI Gym as a framework to implement RL environments/li liFind out how to define and implement reward function/li liExplore Markov chain, Markov decision process, and the Bellman equation/li liDistinguish between Dynamic Programming, Monte Carlo, and Temporal Difference Learning/li liUnderstand the multi-armed bandit problem and explore various strategies to solve it/li liBuild a deep Q model network for playing the video game Breakout/li /ul h4Who this book is for/h4 If you are a data scientist, machine learning enthusiast, or a Python developer who wants to learn basic to advanced deep reinforcement learning algorithms, this workshop is for you. A basic understanding of the Python language is necessary
COMPUTERS / Intelligence (AI) &amp
Semantics
COMPUTERS / Neural Networks
Ghelfi, Emanuele Sonstige oth
Petre, Dr. Alexandra Galina Sonstige oth
Kulkarni, Mayur Sonstige oth
Erscheint auch als Druck-Ausgabe 9781800200456
spellingShingle Palmas, Alessandro
The reinforcement learning workshop learn how to apply cutting-edge reinforcement learning algorithms to a wide range of control problems
COMPUTERS / Intelligence (AI) &amp
Semantics
COMPUTERS / Neural Networks
title The reinforcement learning workshop learn how to apply cutting-edge reinforcement learning algorithms to a wide range of control problems
title_auth The reinforcement learning workshop learn how to apply cutting-edge reinforcement learning algorithms to a wide range of control problems
title_exact_search The reinforcement learning workshop learn how to apply cutting-edge reinforcement learning algorithms to a wide range of control problems
title_full The reinforcement learning workshop learn how to apply cutting-edge reinforcement learning algorithms to a wide range of control problems Alessandro Palmas
title_fullStr The reinforcement learning workshop learn how to apply cutting-edge reinforcement learning algorithms to a wide range of control problems Alessandro Palmas
title_full_unstemmed The reinforcement learning workshop learn how to apply cutting-edge reinforcement learning algorithms to a wide range of control problems Alessandro Palmas
title_short The reinforcement learning workshop
title_sort the reinforcement learning workshop learn how to apply cutting edge reinforcement learning algorithms to a wide range of control problems
title_sub learn how to apply cutting-edge reinforcement learning algorithms to a wide range of control problems
topic COMPUTERS / Intelligence (AI) &amp
Semantics
COMPUTERS / Neural Networks
topic_facet COMPUTERS / Intelligence (AI) &amp
Semantics
COMPUTERS / Neural Networks
work_keys_str_mv AT palmasalessandro thereinforcementlearningworkshoplearnhowtoapplycuttingedgereinforcementlearningalgorithmstoawiderangeofcontrolproblems
AT ghelfiemanuele thereinforcementlearningworkshoplearnhowtoapplycuttingedgereinforcementlearningalgorithmstoawiderangeofcontrolproblems
AT petredralexandragalina thereinforcementlearningworkshoplearnhowtoapplycuttingedgereinforcementlearningalgorithmstoawiderangeofcontrolproblems
AT kulkarnimayur thereinforcementlearningworkshoplearnhowtoapplycuttingedgereinforcementlearningalgorithmstoawiderangeofcontrolproblems