Elimination Methods

The development of polynomial-elimination techniques from classical theory to modern algorithms has undergone a tortuous and rugged path. This can be observed L. van der Waerden's elimination of the "elimination theory" chapter from from B. his classic Modern Algebra in later editions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wang, D. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Vienna Springer Vienna 2001
Ausgabe:1st ed. 2001
Schriftenreihe:Texts & Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria
Schlagworte:
Online-Zugang:UBY01
URL des Eerstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV047064876
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 201216s2001 |||| o||u| ||||||eng d
020 |a 9783709162026  |9 978-3-7091-6202-6 
024 7 |a 10.1007/978-3-7091-6202-6  |2 doi 
035 |a (ZDB-2-SCS)978-3-7091-6202-6 
035 |a (OCoLC)1227478382 
035 |a (DE-599)BVBBV047064876 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-706 
082 0 |a 512  |2 23 
084 |a SK 230  |0 (DE-625)143225:  |2 rvk 
100 1 |a Wang, D.  |e Verfasser  |4 aut 
245 1 0 |a Elimination Methods  |c by D. Wang 
250 |a 1st ed. 2001 
264 1 |a Vienna  |b Springer Vienna  |c 2001 
300 |a 1 Online-Ressource (XIII, 244 p. 8 illus) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Texts & Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria 
520 |a The development of polynomial-elimination techniques from classical theory to modern algorithms has undergone a tortuous and rugged path. This can be observed L. van der Waerden's elimination of the "elimination theory" chapter from from B. his classic Modern Algebra in later editions, A. Weil's hope to eliminate "from algebraic geometry the last traces of elimination theory," and S. Abhyankar's sug­ gestion to "eliminate the eliminators of elimination theory. " The renaissance and recognition of polynomial elimination owe much to the advent and advance of mod­ ern computing technology, based on which effective algorithms are implemented and applied to diverse problems in science and engineering. In the last decade, both theorists and practitioners have more and more realized the significance and power of elimination methods and their underlying theories. Active and extensive research has contributed a great deal of new developments on algorithms and soft­ ware tools to the subject, that have been widely acknowledged. Their applications have taken place from pure and applied mathematics to geometric modeling and robotics, and to artificial neural networks. This book provides a systematic and uniform treatment of elimination algo­ rithms that compute various zero decompositions for systems of multivariate poly­ nomials. The central concepts are triangular sets and systems of different kinds, in terms of which the decompositions are represented. The prerequisites for the concepts and algorithms are results from basic algebra and some knowledge of algorithmic mathematics 
650 4 |a Algebra 
650 4 |a Geometry 
650 4 |a Topology 
650 4 |a Symbolic and Algebraic Manipulation 
650 4 |a Convex and Discrete Geometry 
650 4 |a Manifolds and Cell Complexes (incl. Diff.Topology) 
650 4 |a Algebra 
650 4 |a Geometry 
650 4 |a Topology 
650 4 |a Computer science—Mathematics 
650 4 |a Convex geometry  
650 4 |a Discrete geometry 
650 4 |a Manifolds (Mathematics) 
650 4 |a Complex manifolds 
650 0 7 |a Eliminationsverfahren  |0 (DE-588)4413605-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Eliminationsverfahren  |0 (DE-588)4413605-5  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9783211832417 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9783709162033 
856 4 0 |u https://doi.org/10.1007/978-3-7091-6202-6  |x Verlag  |z URL des Eerstveröffentlichers  |3 Volltext 
912 |a ZDB-2-SCS 
940 1 |q ZDB-2-SCS_2000/2004 
999 |a oai:aleph.bib-bvb.de:BVB01-032471988 
966 e |u https://doi.org/10.1007/978-3-7091-6202-6  |l UBY01  |p ZDB-2-SCS  |q ZDB-2-SCS_2000/2004  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1804182063487647744
adam_txt
any_adam_object
any_adam_object_boolean
author Wang, D.
author_facet Wang, D.
author_role aut
author_sort Wang, D.
author_variant d w dw
building Verbundindex
bvnumber BV047064876
classification_rvk SK 230
collection ZDB-2-SCS
ctrlnum (ZDB-2-SCS)978-3-7091-6202-6
(OCoLC)1227478382
(DE-599)BVBBV047064876
dewey-full 512
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512
dewey-search 512
dewey-sort 3512
dewey-tens 510 - Mathematics
discipline Informatik
Mathematik
discipline_str_mv Informatik
Mathematik
doi_str_mv 10.1007/978-3-7091-6202-6
edition 1st ed. 2001
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03754nmm a2200613zc 4500</leader><controlfield tag="001">BV047064876</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201216s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783709162026</subfield><subfield code="9">978-3-7091-6202-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-7091-6202-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-3-7091-6202-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227478382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047064876</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elimination Methods</subfield><subfield code="c">by D. Wang</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2001</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Vienna</subfield><subfield code="b">Springer Vienna</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 244 p. 8 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts &amp; Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The development of polynomial-elimination techniques from classical theory to modern algorithms has undergone a tortuous and rugged path. This can be observed L. van der Waerden's elimination of the "elimination theory" chapter from from B. his classic Modern Algebra in later editions, A. Weil's hope to eliminate "from algebraic geometry the last traces of elimination theory," and S. Abhyankar's sug­ gestion to "eliminate the eliminators of elimination theory. " The renaissance and recognition of polynomial elimination owe much to the advent and advance of mod­ ern computing technology, based on which effective algorithms are implemented and applied to diverse problems in science and engineering. In the last decade, both theorists and practitioners have more and more realized the significance and power of elimination methods and their underlying theories. Active and extensive research has contributed a great deal of new developments on algorithms and soft­ ware tools to the subject, that have been widely acknowledged. Their applications have taken place from pure and applied mathematics to geometric modeling and robotics, and to artificial neural networks. This book provides a systematic and uniform treatment of elimination algo­ rithms that compute various zero decompositions for systems of multivariate poly­ nomials. The central concepts are triangular sets and systems of different kinds, in terms of which the decompositions are represented. The prerequisites for the concepts and algorithms are results from basic algebra and some knowledge of algorithmic mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symbolic and Algebraic Manipulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex and Discrete Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science—Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex geometry </subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eliminationsverfahren</subfield><subfield code="0">(DE-588)4413605-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Eliminationsverfahren</subfield><subfield code="0">(DE-588)4413605-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783211832417</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783709162033</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-7091-6202-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Eerstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032471988</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7091-6202-6</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">ZDB-2-SCS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV047064876
illustrated Not Illustrated
index_date 2024-07-03T16:12:23Z
indexdate 2024-07-10T09:01:36Z
institution BVB
isbn 9783709162026
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032471988
oclc_num 1227478382
open_access_boolean
owner DE-706
owner_facet DE-706
physical 1 Online-Ressource (XIII, 244 p. 8 illus)
psigel ZDB-2-SCS
ZDB-2-SCS_2000/2004
ZDB-2-SCS ZDB-2-SCS_2000/2004
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher Springer Vienna
record_format marc
series2 Texts & Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria
spelling Wang, D. Verfasser aut
Elimination Methods by D. Wang
1st ed. 2001
Vienna Springer Vienna 2001
1 Online-Ressource (XIII, 244 p. 8 illus)
txt rdacontent
c rdamedia
cr rdacarrier
Texts & Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria
The development of polynomial-elimination techniques from classical theory to modern algorithms has undergone a tortuous and rugged path. This can be observed L. van der Waerden's elimination of the "elimination theory" chapter from from B. his classic Modern Algebra in later editions, A. Weil's hope to eliminate "from algebraic geometry the last traces of elimination theory," and S. Abhyankar's sug­ gestion to "eliminate the eliminators of elimination theory. " The renaissance and recognition of polynomial elimination owe much to the advent and advance of mod­ ern computing technology, based on which effective algorithms are implemented and applied to diverse problems in science and engineering. In the last decade, both theorists and practitioners have more and more realized the significance and power of elimination methods and their underlying theories. Active and extensive research has contributed a great deal of new developments on algorithms and soft­ ware tools to the subject, that have been widely acknowledged. Their applications have taken place from pure and applied mathematics to geometric modeling and robotics, and to artificial neural networks. This book provides a systematic and uniform treatment of elimination algo­ rithms that compute various zero decompositions for systems of multivariate poly­ nomials. The central concepts are triangular sets and systems of different kinds, in terms of which the decompositions are represented. The prerequisites for the concepts and algorithms are results from basic algebra and some knowledge of algorithmic mathematics
Algebra
Geometry
Topology
Symbolic and Algebraic Manipulation
Convex and Discrete Geometry
Manifolds and Cell Complexes (incl. Diff.Topology)
Computer science—Mathematics
Convex geometry 
Discrete geometry
Manifolds (Mathematics)
Complex manifolds
Eliminationsverfahren (DE-588)4413605-5 gnd rswk-swf
Eliminationsverfahren (DE-588)4413605-5 s
DE-604
Erscheint auch als Druck-Ausgabe 9783211832417
Erscheint auch als Druck-Ausgabe 9783709162033
https://doi.org/10.1007/978-3-7091-6202-6 Verlag URL des Eerstveröffentlichers Volltext
spellingShingle Wang, D.
Elimination Methods
Algebra
Geometry
Topology
Symbolic and Algebraic Manipulation
Convex and Discrete Geometry
Manifolds and Cell Complexes (incl. Diff.Topology)
Computer science—Mathematics
Convex geometry 
Discrete geometry
Manifolds (Mathematics)
Complex manifolds
Eliminationsverfahren (DE-588)4413605-5 gnd
subject_GND (DE-588)4413605-5
title Elimination Methods
title_auth Elimination Methods
title_exact_search Elimination Methods
title_exact_search_txtP Elimination Methods
title_full Elimination Methods by D. Wang
title_fullStr Elimination Methods by D. Wang
title_full_unstemmed Elimination Methods by D. Wang
title_short Elimination Methods
title_sort elimination methods
topic Algebra
Geometry
Topology
Symbolic and Algebraic Manipulation
Convex and Discrete Geometry
Manifolds and Cell Complexes (incl. Diff.Topology)
Computer science—Mathematics
Convex geometry 
Discrete geometry
Manifolds (Mathematics)
Complex manifolds
Eliminationsverfahren (DE-588)4413605-5 gnd
topic_facet Algebra
Geometry
Topology
Symbolic and Algebraic Manipulation
Convex and Discrete Geometry
Manifolds and Cell Complexes (incl. Diff.Topology)
Computer science—Mathematics
Convex geometry 
Discrete geometry
Manifolds (Mathematics)
Complex manifolds
Eliminationsverfahren
url https://doi.org/10.1007/978-3-7091-6202-6
work_keys_str_mv AT wangd eliminationmethods