Elimination Methods
The development of polynomial-elimination techniques from classical theory to modern algorithms has undergone a tortuous and rugged path. This can be observed L. van der Waerden's elimination of the "elimination theory" chapter from from B. his classic Modern Algebra in later editions...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Vienna
Springer Vienna
2001
|
Ausgabe: | 1st ed. 2001 |
Schriftenreihe: | Texts & Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria
|
Schlagworte: | |
Online-Zugang: | UBY01 URL des Eerstveröffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047064876 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201216s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783709162026 |9 978-3-7091-6202-6 | ||
024 | 7 | |a 10.1007/978-3-7091-6202-6 |2 doi | |
035 | |a (ZDB-2-SCS)978-3-7091-6202-6 | ||
035 | |a (OCoLC)1227478382 | ||
035 | |a (DE-599)BVBBV047064876 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 512 |2 23 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Wang, D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elimination Methods |c by D. Wang |
250 | |a 1st ed. 2001 | ||
264 | 1 | |a Vienna |b Springer Vienna |c 2001 | |
300 | |a 1 Online-Ressource (XIII, 244 p. 8 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Texts & Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria | |
520 | |a The development of polynomial-elimination techniques from classical theory to modern algorithms has undergone a tortuous and rugged path. This can be observed L. van der Waerden's elimination of the "elimination theory" chapter from from B. his classic Modern Algebra in later editions, A. Weil's hope to eliminate "from algebraic geometry the last traces of elimination theory," and S. Abhyankar's sug gestion to "eliminate the eliminators of elimination theory. " The renaissance and recognition of polynomial elimination owe much to the advent and advance of mod ern computing technology, based on which effective algorithms are implemented and applied to diverse problems in science and engineering. In the last decade, both theorists and practitioners have more and more realized the significance and power of elimination methods and their underlying theories. Active and extensive research has contributed a great deal of new developments on algorithms and soft ware tools to the subject, that have been widely acknowledged. Their applications have taken place from pure and applied mathematics to geometric modeling and robotics, and to artificial neural networks. This book provides a systematic and uniform treatment of elimination algo rithms that compute various zero decompositions for systems of multivariate poly nomials. The central concepts are triangular sets and systems of different kinds, in terms of which the decompositions are represented. The prerequisites for the concepts and algorithms are results from basic algebra and some knowledge of algorithmic mathematics | ||
650 | 4 | |a Algebra | |
650 | 4 | |a Geometry | |
650 | 4 | |a Topology | |
650 | 4 | |a Symbolic and Algebraic Manipulation | |
650 | 4 | |a Convex and Discrete Geometry | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Algebra | |
650 | 4 | |a Geometry | |
650 | 4 | |a Topology | |
650 | 4 | |a Computer science—Mathematics | |
650 | 4 | |a Convex geometry | |
650 | 4 | |a Discrete geometry | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Complex manifolds | |
650 | 0 | 7 | |a Eliminationsverfahren |0 (DE-588)4413605-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Eliminationsverfahren |0 (DE-588)4413605-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783211832417 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783709162033 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-7091-6202-6 |x Verlag |z URL des Eerstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SCS | ||
940 | 1 | |q ZDB-2-SCS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032471988 | ||
966 | e | |u https://doi.org/10.1007/978-3-7091-6202-6 |l UBY01 |p ZDB-2-SCS |q ZDB-2-SCS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182063487647744 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Wang, D. |
author_facet | Wang, D. |
author_role | aut |
author_sort | Wang, D. |
author_variant | d w dw |
building | Verbundindex |
bvnumber | BV047064876 |
classification_rvk | SK 230 |
collection | ZDB-2-SCS |
ctrlnum | (ZDB-2-SCS)978-3-7091-6202-6 (OCoLC)1227478382 (DE-599)BVBBV047064876 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
doi_str_mv | 10.1007/978-3-7091-6202-6 |
edition | 1st ed. 2001 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03754nmm a2200613zc 4500</leader><controlfield tag="001">BV047064876</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201216s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783709162026</subfield><subfield code="9">978-3-7091-6202-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-7091-6202-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-3-7091-6202-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227478382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047064876</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elimination Methods</subfield><subfield code="c">by D. Wang</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2001</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Vienna</subfield><subfield code="b">Springer Vienna</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 244 p. 8 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts & Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The development of polynomial-elimination techniques from classical theory to modern algorithms has undergone a tortuous and rugged path. This can be observed L. van der Waerden's elimination of the "elimination theory" chapter from from B. his classic Modern Algebra in later editions, A. Weil's hope to eliminate "from algebraic geometry the last traces of elimination theory," and S. Abhyankar's sug gestion to "eliminate the eliminators of elimination theory. " The renaissance and recognition of polynomial elimination owe much to the advent and advance of mod ern computing technology, based on which effective algorithms are implemented and applied to diverse problems in science and engineering. In the last decade, both theorists and practitioners have more and more realized the significance and power of elimination methods and their underlying theories. Active and extensive research has contributed a great deal of new developments on algorithms and soft ware tools to the subject, that have been widely acknowledged. Their applications have taken place from pure and applied mathematics to geometric modeling and robotics, and to artificial neural networks. This book provides a systematic and uniform treatment of elimination algo rithms that compute various zero decompositions for systems of multivariate poly nomials. The central concepts are triangular sets and systems of different kinds, in terms of which the decompositions are represented. The prerequisites for the concepts and algorithms are results from basic algebra and some knowledge of algorithmic mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symbolic and Algebraic Manipulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex and Discrete Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science—Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex geometry </subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eliminationsverfahren</subfield><subfield code="0">(DE-588)4413605-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Eliminationsverfahren</subfield><subfield code="0">(DE-588)4413605-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783211832417</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783709162033</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-7091-6202-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Eerstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032471988</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7091-6202-6</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">ZDB-2-SCS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047064876 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:12:23Z |
indexdate | 2024-07-10T09:01:36Z |
institution | BVB |
isbn | 9783709162026 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032471988 |
oclc_num | 1227478382 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (XIII, 244 p. 8 illus) |
psigel | ZDB-2-SCS ZDB-2-SCS_2000/2004 ZDB-2-SCS ZDB-2-SCS_2000/2004 |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer Vienna |
record_format | marc |
series2 | Texts & Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria |
spelling | Wang, D. Verfasser aut Elimination Methods by D. Wang 1st ed. 2001 Vienna Springer Vienna 2001 1 Online-Ressource (XIII, 244 p. 8 illus) txt rdacontent c rdamedia cr rdacarrier Texts & Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria The development of polynomial-elimination techniques from classical theory to modern algorithms has undergone a tortuous and rugged path. This can be observed L. van der Waerden's elimination of the "elimination theory" chapter from from B. his classic Modern Algebra in later editions, A. Weil's hope to eliminate "from algebraic geometry the last traces of elimination theory," and S. Abhyankar's sug gestion to "eliminate the eliminators of elimination theory. " The renaissance and recognition of polynomial elimination owe much to the advent and advance of mod ern computing technology, based on which effective algorithms are implemented and applied to diverse problems in science and engineering. In the last decade, both theorists and practitioners have more and more realized the significance and power of elimination methods and their underlying theories. Active and extensive research has contributed a great deal of new developments on algorithms and soft ware tools to the subject, that have been widely acknowledged. Their applications have taken place from pure and applied mathematics to geometric modeling and robotics, and to artificial neural networks. This book provides a systematic and uniform treatment of elimination algo rithms that compute various zero decompositions for systems of multivariate poly nomials. The central concepts are triangular sets and systems of different kinds, in terms of which the decompositions are represented. The prerequisites for the concepts and algorithms are results from basic algebra and some knowledge of algorithmic mathematics Algebra Geometry Topology Symbolic and Algebraic Manipulation Convex and Discrete Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Computer science—Mathematics Convex geometry Discrete geometry Manifolds (Mathematics) Complex manifolds Eliminationsverfahren (DE-588)4413605-5 gnd rswk-swf Eliminationsverfahren (DE-588)4413605-5 s DE-604 Erscheint auch als Druck-Ausgabe 9783211832417 Erscheint auch als Druck-Ausgabe 9783709162033 https://doi.org/10.1007/978-3-7091-6202-6 Verlag URL des Eerstveröffentlichers Volltext |
spellingShingle | Wang, D. Elimination Methods Algebra Geometry Topology Symbolic and Algebraic Manipulation Convex and Discrete Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Computer science—Mathematics Convex geometry Discrete geometry Manifolds (Mathematics) Complex manifolds Eliminationsverfahren (DE-588)4413605-5 gnd |
subject_GND | (DE-588)4413605-5 |
title | Elimination Methods |
title_auth | Elimination Methods |
title_exact_search | Elimination Methods |
title_exact_search_txtP | Elimination Methods |
title_full | Elimination Methods by D. Wang |
title_fullStr | Elimination Methods by D. Wang |
title_full_unstemmed | Elimination Methods by D. Wang |
title_short | Elimination Methods |
title_sort | elimination methods |
topic | Algebra Geometry Topology Symbolic and Algebraic Manipulation Convex and Discrete Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Computer science—Mathematics Convex geometry Discrete geometry Manifolds (Mathematics) Complex manifolds Eliminationsverfahren (DE-588)4413605-5 gnd |
topic_facet | Algebra Geometry Topology Symbolic and Algebraic Manipulation Convex and Discrete Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Computer science—Mathematics Convex geometry Discrete geometry Manifolds (Mathematics) Complex manifolds Eliminationsverfahren |
url | https://doi.org/10.1007/978-3-7091-6202-6 |
work_keys_str_mv | AT wangd eliminationmethods |