Fully Tuned Radial Basis Function Neural Networks for Flight Control
Fully Tuned Radial Basis Function Neural Networks for Flight Control presents the use of the Radial Basis Function (RBF) neural networks for adaptive control of nonlinear systems with emphasis on flight control applications. A Lyapunov synthesis approach is used to derive the tuning rules for the RB...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer US
2002
|
Ausgabe: | 1st ed. 2002 |
Schriftenreihe: | The International Series on Asian Studies in Computer and Information Science
12 |
Schlagworte: | |
Online-Zugang: | UBY01 URL des Eerstveröffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV047064242 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201216s2002 |||| o||u| ||||||eng d | ||
020 | |a 9781475752861 |9 978-1-4757-5286-1 | ||
024 | 7 | |a 10.1007/978-1-4757-5286-1 |2 doi | |
035 | |a (ZDB-2-SCS)978-1-4757-5286-1 | ||
035 | |a (OCoLC)1227480117 | ||
035 | |a (DE-599)BVBBV047064242 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 621 |2 23 | |
100 | 1 | |a Sundararajan, N. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fully Tuned Radial Basis Function Neural Networks for Flight Control |c by N. Sundararajan, P. Saratchandran, Yan Li |
250 | |a 1st ed. 2002 | ||
264 | 1 | |a New York, NY |b Springer US |c 2002 | |
300 | |a 1 Online-Ressource (XVI, 158 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The International Series on Asian Studies in Computer and Information Science |v 12 | |
520 | |a Fully Tuned Radial Basis Function Neural Networks for Flight Control presents the use of the Radial Basis Function (RBF) neural networks for adaptive control of nonlinear systems with emphasis on flight control applications. A Lyapunov synthesis approach is used to derive the tuning rules for the RBF controller parameters in order to guarantee the stability of the closed loop system. Unlike previous methods that tune only the weights of the RBF network, this book presents the derivation of the tuning law for tuning the centers, widths, and weights of the RBF network, and compares the results with existing algorithms. It also includes a detailed review of system identification, including indirect and direct adaptive control of nonlinear systems using neural networks. Fully Tuned Radial Basis Function Neural Networks for Flight Control is an excellent resource for professionals using neural adaptive controllers for flight control applications | ||
650 | 4 | |a Complex Systems | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Artificial Intelligence | |
650 | 4 | |a Automotive Engineering | |
650 | 4 | |a Statistical Physics and Dynamical Systems | |
650 | 4 | |a Statistical physics | |
650 | 4 | |a Dynamical systems | |
650 | 4 | |a Calculus of variations | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Automotive engineering | |
700 | 1 | |a Saratchandran, P. |4 aut | |
700 | 0 | |a Yan Li |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781441949158 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780792375180 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781475752878 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-5286-1 |x Verlag |z URL des Eerstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SCS | ||
940 | 1 | |q ZDB-2-SCS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032471354 | ||
966 | e | |u https://doi.org/10.1007/978-1-4757-5286-1 |l UBY01 |p ZDB-2-SCS |q ZDB-2-SCS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182062010204160 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Sundararajan, N. Saratchandran, P. Yan Li |
author_facet | Sundararajan, N. Saratchandran, P. Yan Li |
author_role | aut aut aut |
author_sort | Sundararajan, N. |
author_variant | n s ns p s ps y l yl |
building | Verbundindex |
bvnumber | BV047064242 |
collection | ZDB-2-SCS |
ctrlnum | (ZDB-2-SCS)978-1-4757-5286-1 (OCoLC)1227480117 (DE-599)BVBBV047064242 |
dewey-full | 621 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621 |
dewey-search | 621 |
dewey-sort | 3621 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1007/978-1-4757-5286-1 |
edition | 1st ed. 2002 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02988nmm a2200553zcb4500</leader><controlfield tag="001">BV047064242</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201216s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475752861</subfield><subfield code="9">978-1-4757-5286-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-5286-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-1-4757-5286-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227480117</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047064242</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sundararajan, N.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fully Tuned Radial Basis Function Neural Networks for Flight Control</subfield><subfield code="c">by N. Sundararajan, P. Saratchandran, Yan Li</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2002</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer US</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 158 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The International Series on Asian Studies in Computer and Information Science</subfield><subfield code="v">12</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fully Tuned Radial Basis Function Neural Networks for Flight Control presents the use of the Radial Basis Function (RBF) neural networks for adaptive control of nonlinear systems with emphasis on flight control applications. A Lyapunov synthesis approach is used to derive the tuning rules for the RBF controller parameters in order to guarantee the stability of the closed loop system. Unlike previous methods that tune only the weights of the RBF network, this book presents the derivation of the tuning law for tuning the centers, widths, and weights of the RBF network, and compares the results with existing algorithms. It also includes a detailed review of system identification, including indirect and direct adaptive control of nonlinear systems using neural networks. Fully Tuned Radial Basis Function Neural Networks for Flight Control is an excellent resource for professionals using neural adaptive controllers for flight control applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automotive Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics and Dynamical Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automotive engineering</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saratchandran, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yan Li</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781441949158</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780792375180</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781475752878</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-5286-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Eerstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032471354</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4757-5286-1</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">ZDB-2-SCS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047064242 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:12:22Z |
indexdate | 2024-07-10T09:01:34Z |
institution | BVB |
isbn | 9781475752861 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032471354 |
oclc_num | 1227480117 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (XVI, 158 p) |
psigel | ZDB-2-SCS ZDB-2-SCS_2000/2004 ZDB-2-SCS ZDB-2-SCS_2000/2004 |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer US |
record_format | marc |
series2 | The International Series on Asian Studies in Computer and Information Science |
spelling | Sundararajan, N. Verfasser aut Fully Tuned Radial Basis Function Neural Networks for Flight Control by N. Sundararajan, P. Saratchandran, Yan Li 1st ed. 2002 New York, NY Springer US 2002 1 Online-Ressource (XVI, 158 p) txt rdacontent c rdamedia cr rdacarrier The International Series on Asian Studies in Computer and Information Science 12 Fully Tuned Radial Basis Function Neural Networks for Flight Control presents the use of the Radial Basis Function (RBF) neural networks for adaptive control of nonlinear systems with emphasis on flight control applications. A Lyapunov synthesis approach is used to derive the tuning rules for the RBF controller parameters in order to guarantee the stability of the closed loop system. Unlike previous methods that tune only the weights of the RBF network, this book presents the derivation of the tuning law for tuning the centers, widths, and weights of the RBF network, and compares the results with existing algorithms. It also includes a detailed review of system identification, including indirect and direct adaptive control of nonlinear systems using neural networks. Fully Tuned Radial Basis Function Neural Networks for Flight Control is an excellent resource for professionals using neural adaptive controllers for flight control applications Complex Systems Calculus of Variations and Optimal Control; Optimization Artificial Intelligence Automotive Engineering Statistical Physics and Dynamical Systems Statistical physics Dynamical systems Calculus of variations Artificial intelligence Automotive engineering Saratchandran, P. aut Yan Li aut Erscheint auch als Druck-Ausgabe 9781441949158 Erscheint auch als Druck-Ausgabe 9780792375180 Erscheint auch als Druck-Ausgabe 9781475752878 https://doi.org/10.1007/978-1-4757-5286-1 Verlag URL des Eerstveröffentlichers Volltext |
spellingShingle | Sundararajan, N. Saratchandran, P. Yan Li Fully Tuned Radial Basis Function Neural Networks for Flight Control Complex Systems Calculus of Variations and Optimal Control; Optimization Artificial Intelligence Automotive Engineering Statistical Physics and Dynamical Systems Statistical physics Dynamical systems Calculus of variations Artificial intelligence Automotive engineering |
title | Fully Tuned Radial Basis Function Neural Networks for Flight Control |
title_auth | Fully Tuned Radial Basis Function Neural Networks for Flight Control |
title_exact_search | Fully Tuned Radial Basis Function Neural Networks for Flight Control |
title_exact_search_txtP | Fully Tuned Radial Basis Function Neural Networks for Flight Control |
title_full | Fully Tuned Radial Basis Function Neural Networks for Flight Control by N. Sundararajan, P. Saratchandran, Yan Li |
title_fullStr | Fully Tuned Radial Basis Function Neural Networks for Flight Control by N. Sundararajan, P. Saratchandran, Yan Li |
title_full_unstemmed | Fully Tuned Radial Basis Function Neural Networks for Flight Control by N. Sundararajan, P. Saratchandran, Yan Li |
title_short | Fully Tuned Radial Basis Function Neural Networks for Flight Control |
title_sort | fully tuned radial basis function neural networks for flight control |
topic | Complex Systems Calculus of Variations and Optimal Control; Optimization Artificial Intelligence Automotive Engineering Statistical Physics and Dynamical Systems Statistical physics Dynamical systems Calculus of variations Artificial intelligence Automotive engineering |
topic_facet | Complex Systems Calculus of Variations and Optimal Control; Optimization Artificial Intelligence Automotive Engineering Statistical Physics and Dynamical Systems Statistical physics Dynamical systems Calculus of variations Artificial intelligence Automotive engineering |
url | https://doi.org/10.1007/978-1-4757-5286-1 |
work_keys_str_mv | AT sundararajann fullytunedradialbasisfunctionneuralnetworksforflightcontrol AT saratchandranp fullytunedradialbasisfunctionneuralnetworksforflightcontrol AT yanli fullytunedradialbasisfunctionneuralnetworksforflightcontrol |