Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies

1 Fundamental assumptions -- 2 The state of a quantum system as a subsystem of a composite system -- 3 Relation between the state of a system as isolated and as open -- 4 Universality of the probability function -- 5 Appendix A -- 6 Appendix B -- 7 Appendix C -- 8 Appendix D.

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Campanella, Matteo 1947-2016 (VerfasserIn), Jou, David 1953- (VerfasserIn), Mongiovì, Maria Stella (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cham, Switzerland Springer [2020]
Schriftenreihe:UNIPA Springer series
Schlagworte:
Online-Zugang:Cover
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV046999154
003 DE-604
005 20220217
007 t|
008 201116s2020 sz |||| 00||| eng d
020 |a 9783030442064  |9 978-3-030-44206-4 
035 |a (OCoLC)1198712868 
035 |a (DE-599)KXP1736072501 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a sz  |c XA-CH 
049 |a DE-703 
082 0 |a 519  |2 23 
084 |a UK 1200  |0 (DE-625)145792:  |2 rvk 
100 1 |a Campanella, Matteo  |d 1947-2016  |e Verfasser  |0 (DE-588)121996963X  |4 aut 
245 1 0 |a Interpretative aspects of quantum mechanics  |b Matteo Campanella's mathematical studies  |c Matteo Campanella, David Jou, Maria Stella Mongiovì 
264 1 |a Cham, Switzerland  |b Springer  |c [2020] 
300 |a xv, 143 Seiten 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a UNIPA Springer series 
520 3 |a 1 Fundamental assumptions -- 2 The state of a quantum system as a subsystem of a composite system -- 3 Relation between the state of a system as isolated and as open -- 4 Universality of the probability function -- 5 Appendix A -- 6 Appendix B -- 7 Appendix C -- 8 Appendix D. 
520 3 |a This book presents a selection of Prof. Matteo Campanella’s writings on the interpretative aspects of quantum mechanics and on a possible derivation of Born's rule – one of the key principles of the probabilistic interpretation of quantum mechanics – that is independent of any priori probabilistic interpretation. This topic is of fundamental interest, and as such is currently an active area of research. Starting from a natural method of defining such a state, Campanella found that it can be characterized through a partial density operator, which occurs as a consequence of the formalism and of a number of reasonable assumptions connected with the notion of a state. The book demonstrates that the density operator arises as an orbit invariant that has to be interpreted as probabilistic, and that its quantitative implementation is equivalent to Born's rule. The appendices present various mathematical details, which would have interrupted the continuity of the discussion if they had been included in the main text. For instance, they discuss baricentric coordinates, mapping between Hilbert spaces, tensor products between linear spaces, orbits of vectors of a linear space under the action of its structure group, and the class of Hilbert space as a category 
653 0 |a Mathematical physics 
653 0 |a Quantum physics 
700 1 |a Jou, David  |d 1953-  |e Verfasser  |0 (DE-588)129374679  |4 aut 
700 1 |a Mongiovì, Maria Stella  |e Verfasser  |0 (DE-588)1229443320  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |o 10.1007/978-3-030-44207-1  |z 978-3-030-44207-1 
856 4 2 |m V:DE-576;X:SPRINGER  |q image/jpeg  |u http://swbplus.bsz-bw.de/bsz1728470064cov.htm  |v 20200917175825  |3 Cover 
943 1 |a oai:aleph.bib-bvb.de:BVB01-032406827 

Datensatz im Suchindex

_version_ 1819309943422976001
any_adam_object
author Campanella, Matteo 1947-2016
Jou, David 1953-
Mongiovì, Maria Stella
author_GND (DE-588)121996963X
(DE-588)129374679
(DE-588)1229443320
author_facet Campanella, Matteo 1947-2016
Jou, David 1953-
Mongiovì, Maria Stella
author_role aut
aut
aut
author_sort Campanella, Matteo 1947-2016
author_variant m c mc
d j dj
m s m ms msm
building Verbundindex
bvnumber BV046999154
classification_rvk UK 1200
ctrlnum (OCoLC)1198712868
(DE-599)KXP1736072501
dewey-full 519
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519
dewey-search 519
dewey-sort 3519
dewey-tens 510 - Mathematics
discipline Physik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02976nam a2200397 c 4500</leader><controlfield tag="001">BV046999154</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220217 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">201116s2020 sz |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030442064</subfield><subfield code="9">978-3-030-44206-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1198712868</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1736072501</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1200</subfield><subfield code="0">(DE-625)145792:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Campanella, Matteo</subfield><subfield code="d">1947-2016</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121996963X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interpretative aspects of quantum mechanics</subfield><subfield code="b">Matteo Campanella's mathematical studies</subfield><subfield code="c">Matteo Campanella, David Jou, Maria Stella Mongiovì</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 143 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">UNIPA Springer series</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">1 Fundamental assumptions -- 2 The state of a quantum system as a subsystem of a composite system -- 3 Relation between the state of a system as isolated and as open -- 4 Universality of the probability function -- 5 Appendix A -- 6 Appendix B -- 7 Appendix C -- 8 Appendix D.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book presents a selection of Prof. Matteo Campanella’s writings on the interpretative aspects of quantum mechanics and on a possible derivation of Born's rule – one of the key principles of the probabilistic interpretation of quantum mechanics – that is independent of any priori probabilistic interpretation. This topic is of fundamental interest, and as such is currently an active area of research. Starting from a natural method of defining such a state, Campanella found that it can be characterized through a partial density operator, which occurs as a consequence of the formalism and of a number of reasonable assumptions connected with the notion of a state. The book demonstrates that the density operator arises as an orbit invariant that has to be interpreted as probabilistic, and that its quantitative implementation is equivalent to Born's rule. The appendices present various mathematical details, which would have interrupted the continuity of the discussion if they had been included in the main text. For instance, they discuss baricentric coordinates, mapping between Hilbert spaces, tensor products between linear spaces, orbits of vectors of a linear space under the action of its structure group, and the class of Hilbert space as a category</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Quantum physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jou, David</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)129374679</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mongiovì, Maria Stella</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1229443320</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.1007/978-3-030-44207-1</subfield><subfield code="z">978-3-030-44207-1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">V:DE-576;X:SPRINGER</subfield><subfield code="q">image/jpeg</subfield><subfield code="u">http://swbplus.bsz-bw.de/bsz1728470064cov.htm</subfield><subfield code="v">20200917175825</subfield><subfield code="3">Cover</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032406827</subfield></datafield></record></collection>
id DE-604.BV046999154
illustrated Not Illustrated
indexdate 2024-12-24T08:32:34Z
institution BVB
isbn 9783030442064
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032406827
oclc_num 1198712868
open_access_boolean
owner DE-703
owner_facet DE-703
physical xv, 143 Seiten
publishDate 2020
publishDateSearch 2020
publishDateSort 2020
publisher Springer
record_format marc
series2 UNIPA Springer series
spelling Campanella, Matteo 1947-2016 Verfasser (DE-588)121996963X aut
Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies Matteo Campanella, David Jou, Maria Stella Mongiovì
Cham, Switzerland Springer [2020]
xv, 143 Seiten
txt rdacontent
n rdamedia
nc rdacarrier
UNIPA Springer series
1 Fundamental assumptions -- 2 The state of a quantum system as a subsystem of a composite system -- 3 Relation between the state of a system as isolated and as open -- 4 Universality of the probability function -- 5 Appendix A -- 6 Appendix B -- 7 Appendix C -- 8 Appendix D.
This book presents a selection of Prof. Matteo Campanella’s writings on the interpretative aspects of quantum mechanics and on a possible derivation of Born's rule – one of the key principles of the probabilistic interpretation of quantum mechanics – that is independent of any priori probabilistic interpretation. This topic is of fundamental interest, and as such is currently an active area of research. Starting from a natural method of defining such a state, Campanella found that it can be characterized through a partial density operator, which occurs as a consequence of the formalism and of a number of reasonable assumptions connected with the notion of a state. The book demonstrates that the density operator arises as an orbit invariant that has to be interpreted as probabilistic, and that its quantitative implementation is equivalent to Born's rule. The appendices present various mathematical details, which would have interrupted the continuity of the discussion if they had been included in the main text. For instance, they discuss baricentric coordinates, mapping between Hilbert spaces, tensor products between linear spaces, orbits of vectors of a linear space under the action of its structure group, and the class of Hilbert space as a category
Mathematical physics
Quantum physics
Jou, David 1953- Verfasser (DE-588)129374679 aut
Mongiovì, Maria Stella Verfasser (DE-588)1229443320 aut
Erscheint auch als Online-Ausgabe 10.1007/978-3-030-44207-1 978-3-030-44207-1
V:DE-576;X:SPRINGER image/jpeg http://swbplus.bsz-bw.de/bsz1728470064cov.htm 20200917175825 Cover
spellingShingle Campanella, Matteo 1947-2016
Jou, David 1953-
Mongiovì, Maria Stella
Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies
title Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies
title_auth Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies
title_exact_search Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies
title_full Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies Matteo Campanella, David Jou, Maria Stella Mongiovì
title_fullStr Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies Matteo Campanella, David Jou, Maria Stella Mongiovì
title_full_unstemmed Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies Matteo Campanella, David Jou, Maria Stella Mongiovì
title_short Interpretative aspects of quantum mechanics
title_sort interpretative aspects of quantum mechanics matteo campanella s mathematical studies
title_sub Matteo Campanella's mathematical studies
url http://swbplus.bsz-bw.de/bsz1728470064cov.htm
work_keys_str_mv AT campanellamatteo interpretativeaspectsofquantummechanicsmatteocampanellasmathematicalstudies
AT joudavid interpretativeaspectsofquantummechanicsmatteocampanellasmathematicalstudies
AT mongiovimariastella interpretativeaspectsofquantummechanicsmatteocampanellasmathematicalstudies