Lectures on convex geometry
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2020]
|
Schriftenreihe: | Graduate texts in mathematics
286 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV046898802 | ||
003 | DE-604 | ||
005 | 20210812 | ||
007 | t | ||
008 | 200915s2020 a||| |||| 00||| eng d | ||
020 | |a 9783030501792 |c hardcover |9 978-3-030-50179-2 | ||
035 | |a (OCoLC)1197075529 | ||
035 | |a (DE-599)BVBBV046898802 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-634 |a DE-11 |a DE-19 |a DE-739 |a DE-188 |a DE-20 |a DE-384 | ||
082 | 0 | |a 516.1 |2 23 | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
084 | |a 52-01 |2 msc | ||
100 | 1 | |a Hug, Daniel |d 1965- |e Verfasser |0 (DE-588)1218035226 |4 aut | |
245 | 1 | 0 | |a Lectures on convex geometry |c Daniel Hug, Wolfgang Weil |
264 | 1 | |a Cham, Switzerland |b Springer |c [2020] | |
300 | |a xviii, 287 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 286 | |
650 | 4 | |a Convex and Discrete Geometry | |
650 | 4 | |a Polytopes | |
650 | 4 | |a Measure and Integration | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Convex geometry | |
650 | 4 | |a Discrete geometry | |
650 | 4 | |a Polytopes | |
650 | 4 | |a Measure theory | |
650 | 4 | |a Functional analysis | |
650 | 0 | 7 | |a Konvexe Geometrie |0 (DE-588)4407260-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Konvexe Geometrie |0 (DE-588)4407260-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Weil, Wolfgang |d 1945-2018 |e Verfasser |0 (DE-588)1015070035 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-030-50180-8 |
830 | 0 | |a Graduate texts in mathematics |v 286 |w (DE-604)BV000000067 |9 286 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032308501&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032308501 |
Datensatz im Suchindex
_version_ | 1804181768783265792 |
---|---|
adam_text | Contents 1 Convex Sets........................................................................................................ 1.1 1.2 1.3 1.4 1.5 2 Algebraic Properties.............................................................................. Combinatorial Properties....................................................................... Topological Properties........................................................................... Support and Separation.......................................................................... Extremal Representations....................................................................... Convex Functions............................................................................................. 2.1 PropertiesandOperations...................................................................... 2.2 Regularity............................................................................................... 2.3 The Support Function............................................................................. 3 73 The Space of Convex Bodies................................................................. 73 Volume and Surface Area....................................................................... 86 Mixed Volumes....................................................................................... 93 The Brunn-Minkowski Theorem.......................................................... 115 The Alexandrov-Fenchel Inequality.................................................... 126 Steiner
Symmetrization.......................................................................... 136 From Area Measures to Valuations............................................................. 4.1 4.2 4.3 4.4 4.5 5 41 41 52 61 Brunn-Minkowski Theory............................................................................. 3.1 3.2 3.3 3.4 3.5 3.6 4 1 1 12 17 23 33 Mixed Area Measures............................................................................. An Existence and Uniqueness Result................................................... A Local Steiner Formula........................................................................ Projection Bodies and Zonoids.............................................................. Valuations............................................................................................... Integral-Geometric Formulas....................................................................... 5.1 5.2 5.3 5.4 Invariant Measures................................................................................. Projection Formulas................................................................................ Section Formulas.................................................................................... Kinematic Formulas.............................................................................. 147 148 156 169 179 196 207 208 221 226 233 xi
xii Contents Solutions of Selected Exercises............................................................... 6.1 Solutions of Exercises for Chap. 1 ..................................................... 6.2 Solutions of Exercises for Chap. 2..................................................... 6.3 Solutions of Exercises for Chap. 3..................................................... 6.4 Solutions of Exercises for Chap. 4..................................................... 6.5 Solutions of Exercises for Chap. 5..................................................... 239 239 249 256 268 278 References....................................................................................................... 281 6 Index................................................................................................................ 285
|
adam_txt |
Contents 1 Convex Sets. 1.1 1.2 1.3 1.4 1.5 2 Algebraic Properties. Combinatorial Properties. Topological Properties. Support and Separation. Extremal Representations. Convex Functions. 2.1 PropertiesandOperations. 2.2 Regularity. 2.3 The Support Function. 3 73 The Space of Convex Bodies. 73 Volume and Surface Area. 86 Mixed Volumes. 93 The Brunn-Minkowski Theorem. 115 The Alexandrov-Fenchel Inequality. 126 Steiner
Symmetrization. 136 From Area Measures to Valuations. 4.1 4.2 4.3 4.4 4.5 5 41 41 52 61 Brunn-Minkowski Theory. 3.1 3.2 3.3 3.4 3.5 3.6 4 1 1 12 17 23 33 Mixed Area Measures. An Existence and Uniqueness Result. A Local Steiner Formula. Projection Bodies and Zonoids. Valuations. Integral-Geometric Formulas. 5.1 5.2 5.3 5.4 Invariant Measures. Projection Formulas. Section Formulas. Kinematic Formulas. 147 148 156 169 179 196 207 208 221 226 233 xi
xii Contents Solutions of Selected Exercises. 6.1 Solutions of Exercises for Chap. 1 . 6.2 Solutions of Exercises for Chap. 2. 6.3 Solutions of Exercises for Chap. 3. 6.4 Solutions of Exercises for Chap. 4. 6.5 Solutions of Exercises for Chap. 5. 239 239 249 256 268 278 References. 281 6 Index. 285 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Hug, Daniel 1965- Weil, Wolfgang 1945-2018 |
author_GND | (DE-588)1218035226 (DE-588)1015070035 |
author_facet | Hug, Daniel 1965- Weil, Wolfgang 1945-2018 |
author_role | aut aut |
author_sort | Hug, Daniel 1965- |
author_variant | d h dh w w ww |
building | Verbundindex |
bvnumber | BV046898802 |
classification_rvk | SK 380 |
ctrlnum | (OCoLC)1197075529 (DE-599)BVBBV046898802 |
dewey-full | 516.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.1 |
dewey-search | 516.1 |
dewey-sort | 3516.1 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01934nam a2200493 cb4500</leader><controlfield tag="001">BV046898802</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210812 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200915s2020 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030501792</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-3-030-50179-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1197075529</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046898802</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hug, Daniel</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1218035226</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on convex geometry</subfield><subfield code="c">Daniel Hug, Wolfgang Weil</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 287 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">286</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex and Discrete Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polytopes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure and Integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex geometry </subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polytopes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Geometrie</subfield><subfield code="0">(DE-588)4407260-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvexe Geometrie</subfield><subfield code="0">(DE-588)4407260-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weil, Wolfgang</subfield><subfield code="d">1945-2018</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1015070035</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-50180-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">286</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">286</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032308501&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032308501</subfield></datafield></record></collection> |
id | DE-604.BV046898802 |
illustrated | Illustrated |
index_date | 2024-07-03T15:23:32Z |
indexdate | 2024-07-10T08:56:54Z |
institution | BVB |
isbn | 9783030501792 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032308501 |
oclc_num | 1197075529 |
open_access_boolean | |
owner | DE-83 DE-634 DE-11 DE-19 DE-BY-UBM DE-739 DE-188 DE-20 DE-384 |
owner_facet | DE-83 DE-634 DE-11 DE-19 DE-BY-UBM DE-739 DE-188 DE-20 DE-384 |
physical | xviii, 287 Seiten Illustrationen, Diagramme |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Hug, Daniel 1965- Verfasser (DE-588)1218035226 aut Lectures on convex geometry Daniel Hug, Wolfgang Weil Cham, Switzerland Springer [2020] xviii, 287 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 286 Convex and Discrete Geometry Polytopes Measure and Integration Functional Analysis Convex geometry Discrete geometry Measure theory Functional analysis Konvexe Geometrie (DE-588)4407260-0 gnd rswk-swf Konvexe Geometrie (DE-588)4407260-0 s DE-604 Weil, Wolfgang 1945-2018 Verfasser (DE-588)1015070035 aut Erscheint auch als Online-Ausgabe 978-3-030-50180-8 Graduate texts in mathematics 286 (DE-604)BV000000067 286 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032308501&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hug, Daniel 1965- Weil, Wolfgang 1945-2018 Lectures on convex geometry Graduate texts in mathematics Convex and Discrete Geometry Polytopes Measure and Integration Functional Analysis Convex geometry Discrete geometry Measure theory Functional analysis Konvexe Geometrie (DE-588)4407260-0 gnd |
subject_GND | (DE-588)4407260-0 |
title | Lectures on convex geometry |
title_auth | Lectures on convex geometry |
title_exact_search | Lectures on convex geometry |
title_exact_search_txtP | Lectures on convex geometry |
title_full | Lectures on convex geometry Daniel Hug, Wolfgang Weil |
title_fullStr | Lectures on convex geometry Daniel Hug, Wolfgang Weil |
title_full_unstemmed | Lectures on convex geometry Daniel Hug, Wolfgang Weil |
title_short | Lectures on convex geometry |
title_sort | lectures on convex geometry |
topic | Convex and Discrete Geometry Polytopes Measure and Integration Functional Analysis Convex geometry Discrete geometry Measure theory Functional analysis Konvexe Geometrie (DE-588)4407260-0 gnd |
topic_facet | Convex and Discrete Geometry Polytopes Measure and Integration Functional Analysis Convex geometry Discrete geometry Measure theory Functional analysis Konvexe Geometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032308501&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT hugdaniel lecturesonconvexgeometry AT weilwolfgang lecturesonconvexgeometry |