Zeta functions of reductive groups and their zeros

"This book provides a systematic account of several breakthroughs in the modern theory of zeta functions. It contains two different approaches to introduce and study genuine zeta functions for reductive groups (and their maximal parabolic subgroups) defined over number fields. Namely, the geome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Weng, Lin 1964- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific Publishing Company Pte Limited 2018
Schlagworte:
Online-Zugang:UBY01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV046809916
003 DE-604
005 20201103
007 cr|uuu---uuuuu
008 200716s2018 |||| o||u| ||||||eng d
020 |a 9789813230651  |9 978-981-3230-65-1 
024 7 |a 10.1142/10723  |2 doi 
035 |a (ZDB-124-WOP)00010723 
035 |a (OCoLC)1045420765 
035 |a (DE-599)BVBBV046809916 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-706 
082 0 |a 515/.56 
100 1 |a Weng, Lin  |d 1964-  |4 aut 
245 1 0 |a Zeta functions of reductive groups and their zeros  |c by Lin Weng 
264 1 |a Singapore  |b World Scientific Publishing Company Pte Limited  |c 2018 
300 |a 1 online resource (557 pages)  |b illustrations 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Includes bibliographical references and index 
520 |a "This book provides a systematic account of several breakthroughs in the modern theory of zeta functions. It contains two different approaches to introduce and study genuine zeta functions for reductive groups (and their maximal parabolic subgroups) defined over number fields. Namely, the geometric one, built up from stability of principal lattices and an arithmetic cohomology theory, and the analytic one, from Langlands' theory of Eisenstein systems and some techniques used in trace formula, respectively. Apparently different, they are unified via a Lafforgue type relation between Arthur's analytic truncations and parabolic reductions of Harder-Narasimhan and Atiyah-Bott. Dominated by the stability condition and/or the Lie structures embedded in, these zeta functions have a standard form of the functional equation, admit much more refined symmetric structures, and most surprisingly, satisfy a weak Riemann hypothesis. In addition, two levels of the distributions for their zeros are exposed, i.e. a classical one giving the Dirac symbol, and a secondary one conjecturally related to GUE. This book is written not only for experts, but for graduate students as well. For example, it offers a summary of basic theories on Eisenstein series and stability of lattices and arithmetic principal torsors. The second part on rank two zeta functions can be used as an introduction course, containing a Siegel type treatment of cusps and fundamental domains, and an elementary approach to the trace formula involved. Being in the junctions of several branches and advanced topics of mathematics, these works are very complicated, the results are fundamental, and the theory exposes a fertile area for further research."--Publisher's website 
650 4 |a Functions, Zeta 
650 4 |a Linear algebraic groups 
650 4 |a Electronic books 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9789813231528 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9813231521 
856 4 0 |u http://www.worldscientific.com/worldscibooks/10.1142/10723  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-124-WOP 
999 |a oai:aleph.bib-bvb.de:BVB01-032218502 
966 e |u http://www.worldscientific.com/worldscibooks/10.1142/10723  |l UBY01  |p ZDB-124-WOP  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1804181614578630656
adam_txt
any_adam_object
any_adam_object_boolean
author Weng, Lin 1964-
author_facet Weng, Lin 1964-
author_role aut
author_sort Weng, Lin 1964-
author_variant l w lw
building Verbundindex
bvnumber BV046809916
collection ZDB-124-WOP
ctrlnum (ZDB-124-WOP)00010723
(OCoLC)1045420765
(DE-599)BVBBV046809916
dewey-full 515/.56
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.56
dewey-search 515/.56
dewey-sort 3515 256
dewey-tens 510 - Mathematics
discipline Mathematik
discipline_str_mv Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03197nmm a2200409zc 4500</leader><controlfield tag="001">BV046809916</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201103 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200716s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813230651</subfield><subfield code="9">978-981-3230-65-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/10723</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00010723</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1045420765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046809916</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.56</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weng, Lin</subfield><subfield code="d">1964-</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Zeta functions of reductive groups and their zeros</subfield><subfield code="c">by Lin Weng</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Company Pte Limited</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (557 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book provides a systematic account of several breakthroughs in the modern theory of zeta functions. It contains two different approaches to introduce and study genuine zeta functions for reductive groups (and their maximal parabolic subgroups) defined over number fields. Namely, the geometric one, built up from stability of principal lattices and an arithmetic cohomology theory, and the analytic one, from Langlands' theory of Eisenstein systems and some techniques used in trace formula, respectively. Apparently different, they are unified via a Lafforgue type relation between Arthur's analytic truncations and parabolic reductions of Harder-Narasimhan and Atiyah-Bott. Dominated by the stability condition and/or the Lie structures embedded in, these zeta functions have a standard form of the functional equation, admit much more refined symmetric structures, and most surprisingly, satisfy a weak Riemann hypothesis. In addition, two levels of the distributions for their zeros are exposed, i.e. a classical one giving the Dirac symbol, and a secondary one conjecturally related to GUE. This book is written not only for experts, but for graduate students as well. For example, it offers a summary of basic theories on Eisenstein series and stability of lattices and arithmetic principal torsors. The second part on rank two zeta functions can be used as an introduction course, containing a Siegel type treatment of cusps and fundamental domains, and an elementary approach to the trace formula involved. Being in the junctions of several branches and advanced topics of mathematics, these works are very complicated, the results are fundamental, and the theory exposes a fertile area for further research."--Publisher's website</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, Zeta</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear algebraic groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic books</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789813231528</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9813231521</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/10723</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032218502</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/10723</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV046809916
illustrated Illustrated
index_date 2024-07-03T14:58:41Z
indexdate 2024-07-10T08:54:27Z
institution BVB
isbn 9789813230651
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032218502
oclc_num 1045420765
open_access_boolean
owner DE-706
owner_facet DE-706
physical 1 online resource (557 pages) illustrations
psigel ZDB-124-WOP
publishDate 2018
publishDateSearch 2018
publishDateSort 2018
publisher World Scientific Publishing Company Pte Limited
record_format marc
spelling Weng, Lin 1964- aut
Zeta functions of reductive groups and their zeros by Lin Weng
Singapore World Scientific Publishing Company Pte Limited 2018
1 online resource (557 pages) illustrations
txt rdacontent
c rdamedia
cr rdacarrier
Includes bibliographical references and index
"This book provides a systematic account of several breakthroughs in the modern theory of zeta functions. It contains two different approaches to introduce and study genuine zeta functions for reductive groups (and their maximal parabolic subgroups) defined over number fields. Namely, the geometric one, built up from stability of principal lattices and an arithmetic cohomology theory, and the analytic one, from Langlands' theory of Eisenstein systems and some techniques used in trace formula, respectively. Apparently different, they are unified via a Lafforgue type relation between Arthur's analytic truncations and parabolic reductions of Harder-Narasimhan and Atiyah-Bott. Dominated by the stability condition and/or the Lie structures embedded in, these zeta functions have a standard form of the functional equation, admit much more refined symmetric structures, and most surprisingly, satisfy a weak Riemann hypothesis. In addition, two levels of the distributions for their zeros are exposed, i.e. a classical one giving the Dirac symbol, and a secondary one conjecturally related to GUE. This book is written not only for experts, but for graduate students as well. For example, it offers a summary of basic theories on Eisenstein series and stability of lattices and arithmetic principal torsors. The second part on rank two zeta functions can be used as an introduction course, containing a Siegel type treatment of cusps and fundamental domains, and an elementary approach to the trace formula involved. Being in the junctions of several branches and advanced topics of mathematics, these works are very complicated, the results are fundamental, and the theory exposes a fertile area for further research."--Publisher's website
Functions, Zeta
Linear algebraic groups
Electronic books
Erscheint auch als Druck-Ausgabe 9789813231528
Erscheint auch als Druck-Ausgabe 9813231521
http://www.worldscientific.com/worldscibooks/10.1142/10723 Verlag URL des Erstveröffentlichers Volltext
spellingShingle Weng, Lin 1964-
Zeta functions of reductive groups and their zeros
Functions, Zeta
Linear algebraic groups
Electronic books
title Zeta functions of reductive groups and their zeros
title_auth Zeta functions of reductive groups and their zeros
title_exact_search Zeta functions of reductive groups and their zeros
title_exact_search_txtP Zeta functions of reductive groups and their zeros
title_full Zeta functions of reductive groups and their zeros by Lin Weng
title_fullStr Zeta functions of reductive groups and their zeros by Lin Weng
title_full_unstemmed Zeta functions of reductive groups and their zeros by Lin Weng
title_short Zeta functions of reductive groups and their zeros
title_sort zeta functions of reductive groups and their zeros
topic Functions, Zeta
Linear algebraic groups
Electronic books
topic_facet Functions, Zeta
Linear algebraic groups
Electronic books
url http://www.worldscientific.com/worldscibooks/10.1142/10723
work_keys_str_mv AT wenglin zetafunctionsofreductivegroupsandtheirzeros