Learn data mining through Excel a step-by-step approach for understanding machine learning methods

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Zhou, Hong (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: [New York] Apress [2020]
Ausgabe:First edition 2020
Schlagworte:
Online-Zugang:DE-521
DE-1043
DE-1046
DE-Aug4
DE-1050
DE-573
DE-M347
DE-92
DE-1051
DE-898
DE-859
DE-860
DE-863
DE-862
DE-523
DE-20
DE-706
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV046792333
003 DE-604
005 20220118
007 cr|uuu---uuuuu
008 200703s2020 xx a||| o|||| 00||| eng d
020 |a 9781484259825  |c Online  |9 978-1-4842-5982-5 
024 7 |a 10.1007/978-1-4842-5982-5  |2 doi 
035 |a (ZDB-2-CWD)9781484259825 
035 |a (ZDB-30-PQE)6227982 
035 |a (OCoLC)1164621269 
035 |a (DE-599)BVBBV046792333 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-860  |a DE-1046  |a DE-1043  |a DE-Aug4  |a DE-898  |a DE-523  |a DE-859  |a DE-863  |a DE-1050  |a DE-20  |a DE-1051  |a DE-862  |a DE-92  |a DE-573  |a DE-M347  |a DE-521  |a DE-706 
082 0 |a 004.165  |2 23 
084 |a ST 371  |0 (DE-625)143672:  |2 rvk 
100 1 |a Zhou, Hong  |e Verfasser  |0 (DE-588)1213689473  |4 aut 
245 1 0 |a Learn data mining through Excel  |b a step-by-step approach for understanding machine learning methods  |c Hong Zhou 
250 |a First edition 2020 
264 1 |a [New York]  |b Apress  |c [2020] 
264 4 |c © 2020 
300 |a 1 Online-Ressource (XVI, 219 Seiten)  |b Illustrationen 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
650 4 |a Microsoft and .NET. 
650 4 |a Data Mining and Knowledge Discovery 
650 4 |a Microsoft software 
650 4 |a Microsoft .NET Framework 
650 4 |a Data mining 
650 0 7 |a EXCEL  |0 (DE-588)4138932-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Microsoft dot net  |0 (DE-588)4645646-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Data Mining  |0 (DE-588)4428654-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Data Mining  |0 (DE-588)4428654-5  |D s 
689 0 1 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |D s 
689 0 2 |a EXCEL  |0 (DE-588)4138932-3  |D s 
689 0 3 |a Microsoft dot net  |0 (DE-588)4645646-6  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-1-4842-5981-8 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-1-4842-5983-2 
856 4 0 |u https://doi.org/10.1007/978-1-4842-5982-5  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-2-CWD 
912 |a ZDB-30-PQE 
940 1 |q ZDB-2-CWD_2020 
943 1 |a oai:aleph.bib-bvb.de:BVB01-032201261 
966 e |u https://ebookcentral.proquest.com/lib/viadrina-ebooks/detail.action?docID=6227982  |l DE-521  |p ZDB-30-PQE  |q EUV_EK_EBC  |x Aggregator  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4842-5982-5  |l DE-1043  |p ZDB-2-CWD  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4842-5982-5  |l DE-1046  |p ZDB-2-CWD  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4842-5982-5  |l DE-Aug4  |p ZDB-2-CWD  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4842-5982-5  |l DE-1050  |p ZDB-2-CWD  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4842-5982-5  |l DE-573  |p ZDB-2-CWD  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4842-5982-5  |l DE-M347  |p ZDB-2-CWD  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4842-5982-5  |l DE-92  |p ZDB-2-CWD  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4842-5982-5  |l DE-1051  |p ZDB-2-CWD  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4842-5982-5  |l DE-898  |p ZDB-2-CWD  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4842-5982-5  |l DE-859  |p ZDB-2-CWD  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4842-5982-5  |l DE-860  |p ZDB-2-CWD  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4842-5982-5  |l DE-863  |p ZDB-2-CWD  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4842-5982-5  |l DE-862  |p ZDB-2-CWD  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4842-5982-5  |l DE-523  |p ZDB-2-CWD  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4842-5982-5  |l DE-20  |p ZDB-2-CWD  |x Verlag  |3 Volltext 
966 e |u https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=6227982  |l DE-706  |p ZDB-30-PQE  |q UBY01_Einzelkauf22  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819308890284621824
any_adam_object
author Zhou, Hong
author_GND (DE-588)1213689473
author_facet Zhou, Hong
author_role aut
author_sort Zhou, Hong
author_variant h z hz
building Verbundindex
bvnumber BV046792333
classification_rvk ST 371
collection ZDB-2-CWD
ZDB-30-PQE
ctrlnum (ZDB-2-CWD)9781484259825
(ZDB-30-PQE)6227982
(OCoLC)1164621269
(DE-599)BVBBV046792333
dewey-full 004.165
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 004 - Computer science
dewey-raw 004.165
dewey-search 004.165
dewey-sort 14.165
dewey-tens 000 - Computer science, information, general works
discipline Informatik
doi_str_mv 10.1007/978-1-4842-5982-5
edition First edition 2020
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03958nam a2200781zc 4500</leader><controlfield tag="001">BV046792333</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220118 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200703s2020 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484259825</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4842-5982-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4842-5982-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-CWD)9781484259825</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)6227982</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1164621269</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046792333</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-860</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.165</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 371</subfield><subfield code="0">(DE-625)143672:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Hong</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1213689473</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learn data mining through Excel</subfield><subfield code="b">a step-by-step approach for understanding machine learning methods</subfield><subfield code="c">Hong Zhou</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition 2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[New York]</subfield><subfield code="b">Apress</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 219 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microsoft and .NET.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Mining and Knowledge Discovery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microsoft software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microsoft .NET Framework</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">EXCEL</subfield><subfield code="0">(DE-588)4138932-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Microsoft dot net</subfield><subfield code="0">(DE-588)4645646-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">EXCEL</subfield><subfield code="0">(DE-588)4138932-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Microsoft dot net</subfield><subfield code="0">(DE-588)4645646-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4842-5981-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4842-5983-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-CWD</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-CWD_2020</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032201261</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/viadrina-ebooks/detail.action?docID=6227982</subfield><subfield code="l">DE-521</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">EUV_EK_EBC</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-M347</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-1051</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-523</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=6227982</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBY01_Einzelkauf22</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV046792333
illustrated Illustrated
indexdate 2024-12-24T08:15:57Z
institution BVB
isbn 9781484259825
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032201261
oclc_num 1164621269
open_access_boolean
owner DE-860
DE-1046
DE-1043
DE-Aug4
DE-898
DE-BY-UBR
DE-523
DE-859
DE-863
DE-BY-FWS
DE-1050
DE-20
DE-1051
DE-862
DE-BY-FWS
DE-92
DE-573
DE-M347
DE-521
DE-706
owner_facet DE-860
DE-1046
DE-1043
DE-Aug4
DE-898
DE-BY-UBR
DE-523
DE-859
DE-863
DE-BY-FWS
DE-1050
DE-20
DE-1051
DE-862
DE-BY-FWS
DE-92
DE-573
DE-M347
DE-521
DE-706
physical 1 Online-Ressource (XVI, 219 Seiten) Illustrationen
psigel ZDB-2-CWD
ZDB-30-PQE
ZDB-2-CWD_2020
ZDB-30-PQE EUV_EK_EBC
ZDB-30-PQE UBY01_Einzelkauf22
publishDate 2020
publishDateSearch 2020
publishDateSort 2020
publisher Apress
record_format marc
spelling Zhou, Hong Verfasser (DE-588)1213689473 aut
Learn data mining through Excel a step-by-step approach for understanding machine learning methods Hong Zhou
First edition 2020
[New York] Apress [2020]
© 2020
1 Online-Ressource (XVI, 219 Seiten) Illustrationen
txt rdacontent
c rdamedia
cr rdacarrier
Microsoft and .NET.
Data Mining and Knowledge Discovery
Microsoft software
Microsoft .NET Framework
Data mining
EXCEL (DE-588)4138932-3 gnd rswk-swf
Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf
Microsoft dot net (DE-588)4645646-6 gnd rswk-swf
Data Mining (DE-588)4428654-5 gnd rswk-swf
Data Mining (DE-588)4428654-5 s
Maschinelles Lernen (DE-588)4193754-5 s
EXCEL (DE-588)4138932-3 s
Microsoft dot net (DE-588)4645646-6 s
DE-604
Erscheint auch als Druck-Ausgabe 978-1-4842-5981-8
Erscheint auch als Druck-Ausgabe 978-1-4842-5983-2
https://doi.org/10.1007/978-1-4842-5982-5 Verlag URL des Erstveröffentlichers Volltext
spellingShingle Zhou, Hong
Learn data mining through Excel a step-by-step approach for understanding machine learning methods
Microsoft and .NET.
Data Mining and Knowledge Discovery
Microsoft software
Microsoft .NET Framework
Data mining
EXCEL (DE-588)4138932-3 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
Microsoft dot net (DE-588)4645646-6 gnd
Data Mining (DE-588)4428654-5 gnd
subject_GND (DE-588)4138932-3
(DE-588)4193754-5
(DE-588)4645646-6
(DE-588)4428654-5
title Learn data mining through Excel a step-by-step approach for understanding machine learning methods
title_auth Learn data mining through Excel a step-by-step approach for understanding machine learning methods
title_exact_search Learn data mining through Excel a step-by-step approach for understanding machine learning methods
title_full Learn data mining through Excel a step-by-step approach for understanding machine learning methods Hong Zhou
title_fullStr Learn data mining through Excel a step-by-step approach for understanding machine learning methods Hong Zhou
title_full_unstemmed Learn data mining through Excel a step-by-step approach for understanding machine learning methods Hong Zhou
title_short Learn data mining through Excel
title_sort learn data mining through excel a step by step approach for understanding machine learning methods
title_sub a step-by-step approach for understanding machine learning methods
topic Microsoft and .NET.
Data Mining and Knowledge Discovery
Microsoft software
Microsoft .NET Framework
Data mining
EXCEL (DE-588)4138932-3 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
Microsoft dot net (DE-588)4645646-6 gnd
Data Mining (DE-588)4428654-5 gnd
topic_facet Microsoft and .NET.
Data Mining and Knowledge Discovery
Microsoft software
Microsoft .NET Framework
Data mining
EXCEL
Maschinelles Lernen
Microsoft dot net
Data Mining
url https://doi.org/10.1007/978-1-4842-5982-5
work_keys_str_mv AT zhouhong learndataminingthroughexcelastepbystepapproachforunderstandingmachinelearningmethods