Learn data mining through Excel a step-by-step approach for understanding machine learning methods
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[New York]
Apress
[2020]
|
Ausgabe: | First edition 2020 |
Schlagworte: | |
Online-Zugang: | DE-521 DE-1043 DE-1046 DE-Aug4 DE-1050 DE-573 DE-M347 DE-92 DE-1051 DE-898 DE-859 DE-860 DE-863 DE-862 DE-523 DE-20 DE-706 URL des Erstveröffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV046792333 | ||
003 | DE-604 | ||
005 | 20220118 | ||
007 | cr|uuu---uuuuu | ||
008 | 200703s2020 xx a||| o|||| 00||| eng d | ||
020 | |a 9781484259825 |c Online |9 978-1-4842-5982-5 | ||
024 | 7 | |a 10.1007/978-1-4842-5982-5 |2 doi | |
035 | |a (ZDB-2-CWD)9781484259825 | ||
035 | |a (ZDB-30-PQE)6227982 | ||
035 | |a (OCoLC)1164621269 | ||
035 | |a (DE-599)BVBBV046792333 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-860 |a DE-1046 |a DE-1043 |a DE-Aug4 |a DE-898 |a DE-523 |a DE-859 |a DE-863 |a DE-1050 |a DE-20 |a DE-1051 |a DE-862 |a DE-92 |a DE-573 |a DE-M347 |a DE-521 |a DE-706 | ||
082 | 0 | |a 004.165 |2 23 | |
084 | |a ST 371 |0 (DE-625)143672: |2 rvk | ||
100 | 1 | |a Zhou, Hong |e Verfasser |0 (DE-588)1213689473 |4 aut | |
245 | 1 | 0 | |a Learn data mining through Excel |b a step-by-step approach for understanding machine learning methods |c Hong Zhou |
250 | |a First edition 2020 | ||
264 | 1 | |a [New York] |b Apress |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a 1 Online-Ressource (XVI, 219 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Microsoft and .NET. | |
650 | 4 | |a Data Mining and Knowledge Discovery | |
650 | 4 | |a Microsoft software | |
650 | 4 | |a Microsoft .NET Framework | |
650 | 4 | |a Data mining | |
650 | 0 | 7 | |a EXCEL |0 (DE-588)4138932-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Microsoft dot net |0 (DE-588)4645646-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a EXCEL |0 (DE-588)4138932-3 |D s |
689 | 0 | 3 | |a Microsoft dot net |0 (DE-588)4645646-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4842-5981-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4842-5983-2 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4842-5982-5 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-CWD | ||
912 | |a ZDB-30-PQE | ||
940 | 1 | |q ZDB-2-CWD_2020 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032201261 | |
966 | e | |u https://ebookcentral.proquest.com/lib/viadrina-ebooks/detail.action?docID=6227982 |l DE-521 |p ZDB-30-PQE |q EUV_EK_EBC |x Aggregator |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5982-5 |l DE-1043 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5982-5 |l DE-1046 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5982-5 |l DE-Aug4 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5982-5 |l DE-1050 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5982-5 |l DE-573 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5982-5 |l DE-M347 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5982-5 |l DE-92 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5982-5 |l DE-1051 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5982-5 |l DE-898 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5982-5 |l DE-859 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5982-5 |l DE-860 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5982-5 |l DE-863 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5982-5 |l DE-862 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5982-5 |l DE-523 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5982-5 |l DE-20 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=6227982 |l DE-706 |p ZDB-30-PQE |q UBY01_Einzelkauf22 |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1819308890284621824 |
---|---|
any_adam_object | |
author | Zhou, Hong |
author_GND | (DE-588)1213689473 |
author_facet | Zhou, Hong |
author_role | aut |
author_sort | Zhou, Hong |
author_variant | h z hz |
building | Verbundindex |
bvnumber | BV046792333 |
classification_rvk | ST 371 |
collection | ZDB-2-CWD ZDB-30-PQE |
ctrlnum | (ZDB-2-CWD)9781484259825 (ZDB-30-PQE)6227982 (OCoLC)1164621269 (DE-599)BVBBV046792333 |
dewey-full | 004.165 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.165 |
dewey-search | 004.165 |
dewey-sort | 14.165 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-1-4842-5982-5 |
edition | First edition 2020 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03958nam a2200781zc 4500</leader><controlfield tag="001">BV046792333</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220118 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200703s2020 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484259825</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4842-5982-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4842-5982-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-CWD)9781484259825</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)6227982</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1164621269</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046792333</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-860</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.165</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 371</subfield><subfield code="0">(DE-625)143672:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Hong</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1213689473</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learn data mining through Excel</subfield><subfield code="b">a step-by-step approach for understanding machine learning methods</subfield><subfield code="c">Hong Zhou</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition 2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[New York]</subfield><subfield code="b">Apress</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 219 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microsoft and .NET.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Mining and Knowledge Discovery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microsoft software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microsoft .NET Framework</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">EXCEL</subfield><subfield code="0">(DE-588)4138932-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Microsoft dot net</subfield><subfield code="0">(DE-588)4645646-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">EXCEL</subfield><subfield code="0">(DE-588)4138932-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Microsoft dot net</subfield><subfield code="0">(DE-588)4645646-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4842-5981-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4842-5983-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-CWD</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-CWD_2020</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032201261</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/viadrina-ebooks/detail.action?docID=6227982</subfield><subfield code="l">DE-521</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">EUV_EK_EBC</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-M347</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-1051</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-523</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5982-5</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=6227982</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBY01_Einzelkauf22</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046792333 |
illustrated | Illustrated |
indexdate | 2024-12-24T08:15:57Z |
institution | BVB |
isbn | 9781484259825 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032201261 |
oclc_num | 1164621269 |
open_access_boolean | |
owner | DE-860 DE-1046 DE-1043 DE-Aug4 DE-898 DE-BY-UBR DE-523 DE-859 DE-863 DE-BY-FWS DE-1050 DE-20 DE-1051 DE-862 DE-BY-FWS DE-92 DE-573 DE-M347 DE-521 DE-706 |
owner_facet | DE-860 DE-1046 DE-1043 DE-Aug4 DE-898 DE-BY-UBR DE-523 DE-859 DE-863 DE-BY-FWS DE-1050 DE-20 DE-1051 DE-862 DE-BY-FWS DE-92 DE-573 DE-M347 DE-521 DE-706 |
physical | 1 Online-Ressource (XVI, 219 Seiten) Illustrationen |
psigel | ZDB-2-CWD ZDB-30-PQE ZDB-2-CWD_2020 ZDB-30-PQE EUV_EK_EBC ZDB-30-PQE UBY01_Einzelkauf22 |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Apress |
record_format | marc |
spelling | Zhou, Hong Verfasser (DE-588)1213689473 aut Learn data mining through Excel a step-by-step approach for understanding machine learning methods Hong Zhou First edition 2020 [New York] Apress [2020] © 2020 1 Online-Ressource (XVI, 219 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Microsoft and .NET. Data Mining and Knowledge Discovery Microsoft software Microsoft .NET Framework Data mining EXCEL (DE-588)4138932-3 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Microsoft dot net (DE-588)4645646-6 gnd rswk-swf Data Mining (DE-588)4428654-5 gnd rswk-swf Data Mining (DE-588)4428654-5 s Maschinelles Lernen (DE-588)4193754-5 s EXCEL (DE-588)4138932-3 s Microsoft dot net (DE-588)4645646-6 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-4842-5981-8 Erscheint auch als Druck-Ausgabe 978-1-4842-5983-2 https://doi.org/10.1007/978-1-4842-5982-5 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Zhou, Hong Learn data mining through Excel a step-by-step approach for understanding machine learning methods Microsoft and .NET. Data Mining and Knowledge Discovery Microsoft software Microsoft .NET Framework Data mining EXCEL (DE-588)4138932-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Microsoft dot net (DE-588)4645646-6 gnd Data Mining (DE-588)4428654-5 gnd |
subject_GND | (DE-588)4138932-3 (DE-588)4193754-5 (DE-588)4645646-6 (DE-588)4428654-5 |
title | Learn data mining through Excel a step-by-step approach for understanding machine learning methods |
title_auth | Learn data mining through Excel a step-by-step approach for understanding machine learning methods |
title_exact_search | Learn data mining through Excel a step-by-step approach for understanding machine learning methods |
title_full | Learn data mining through Excel a step-by-step approach for understanding machine learning methods Hong Zhou |
title_fullStr | Learn data mining through Excel a step-by-step approach for understanding machine learning methods Hong Zhou |
title_full_unstemmed | Learn data mining through Excel a step-by-step approach for understanding machine learning methods Hong Zhou |
title_short | Learn data mining through Excel |
title_sort | learn data mining through excel a step by step approach for understanding machine learning methods |
title_sub | a step-by-step approach for understanding machine learning methods |
topic | Microsoft and .NET. Data Mining and Knowledge Discovery Microsoft software Microsoft .NET Framework Data mining EXCEL (DE-588)4138932-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Microsoft dot net (DE-588)4645646-6 gnd Data Mining (DE-588)4428654-5 gnd |
topic_facet | Microsoft and .NET. Data Mining and Knowledge Discovery Microsoft software Microsoft .NET Framework Data mining EXCEL Maschinelles Lernen Microsoft dot net Data Mining |
url | https://doi.org/10.1007/978-1-4842-5982-5 |
work_keys_str_mv | AT zhouhong learndataminingthroughexcelastepbystepapproachforunderstandingmachinelearningmethods |