Differential equation solutions with MATLAB

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Xue, Dingyu (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin ; Boston De Gruyter [2020]
Schriftenreihe:De Gruyter STEM
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV046719736
003 DE-604
005 20221108
007 t
008 200513s2020 gw a||| |||| 00||| eng d
020 |a 9783110675245  |c pbk.  |9 978-3-11-067524-5 
020 |a 3110675242  |9 3-11-067524-2 
035 |a (OCoLC)1125818660 
035 |a (DE-599)DNB1197821368 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a gw  |c XA-DE-BE 
049 |a DE-634  |a DE-83  |a DE-703  |a DE-706  |a DE-19  |a DE-20  |a DE-11 
082 0 |a 515.350285  |2 23/ger 
084 |a ST 601  |0 (DE-625)143682:  |2 rvk 
084 |a SK 500  |0 (DE-625)143243:  |2 rvk 
100 1 |a Xue, Dingyu  |e Verfasser  |0 (DE-588)1098160967  |4 aut 
245 1 0 |a Differential equation solutions with MATLAB  |c Dingyü Xue 
264 1 |a Berlin ; Boston  |b De Gruyter  |c [2020] 
264 4 |a [Beijing]  |b Tsinghua University Press  |c [2020] 
264 4 |c © 2020 
300 |a XIII, 438 Seiten  |b Illustrationen, Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a De Gruyter STEM 
650 0 7 |a Differentialgleichung  |0 (DE-588)4012249-9  |2 gnd  |9 rswk-swf 
650 0 7 |a MATLAB  |0 (DE-588)4329066-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Differentialgleichung  |0 (DE-588)4012249-9  |D s 
689 0 1 |a MATLAB  |0 (DE-588)4329066-8  |D s 
689 0 |5 DE-604 
710 2 |a Walter de Gruyter GmbH & Co. KG  |0 (DE-588)10095502-2  |4 pbl 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe, PDF  |z 978-3-11-067525-2 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe, EPUB  |z 978-3-11-067531-3 
856 4 2 |m B:DE-101  |q application/pdf  |u https://d-nb.info/1197821368/04  |3 Inhaltsverzeichnis 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032129977&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-032129977 

Datensatz im Suchindex

_version_ 1804181459419791360
adam_text CONTENTS PREFACE * V 1 1.1 1.1.1 1.1.2 1.1.3 1.2 1.3 1.4 AN INTRODUCTION TO DIFFERENTIAL EQUATIONS * 1 INTRODUCTION TO DIFFERENTIAL EQUATION MODELING * 1 MODELING OF AN ELECTRIC CIRCUIT * 1 MODELING IN MECHANICAL SYSTEMS * 3 MODELS IN SOCIAL SYSTEMS * 4 A BRIEF HISTORY OF DIFFERENTIAL EQUATIONS * 6 OUTLINE AND MAIN TOPICS IN THE BOOK * 8 EXERCISES * 10 2 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.3 ANALYTICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS * 11 ANALYTICAL SOLUTIONS OF FIRST-ORDER DIFFERENTIAL EQUATIONS * 11 DIFFERENTIAL EQUATION SOLVABLE BY SIMPLE INTEGRALS * 12 HOMOGENEOUS DIFFERENTIAL EQUATIONS * 13 INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS * 14 NONLINEAR DIFFERENTIAL EQUATIONS WITH SEPARABLE VARIABLES * 15 SPECIAL FUNCTIONS AND SECOND-ORDER DIFFERENTIAL EQUATIONS * 17 GAMMA FUNCTION * 17 HYPERGEOMETRIC FUNCTIONS * 19 BESSEL DIFFERENTIAL EQUATIONS * 20 LEGENDRE DIFFERENTIAL EQUATIONS AND FUNCTIONS * 22 AIRY FUNCTIONS ----- 23 SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS * 25 2.3.1 MATHEMATICAL MODELING OF LINEAR CONSTANT-COEFFICIENT DIFFERENTIAL EQUATIONS * 25 2.3.2 2.3.3 2.3.4 2.4 2.4.1 2.4.2 LAPLACE TRANSFORM-BASED SOLUTIONS * 26 SOLUTIONS OF INHOMOGENEOUS DIFFERENTIAL EQUATIONS * 28 SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH NONZERO INITIAL VALUES * 29 ANALYTICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS * 32 ANALYTICAL SOLUTIONS OF SIMPLE DIFFERENTIAL EQUATIONS * 32 ANALYTICAL SOLUTIONS OF HIGH-ORDER LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS * 35 2.4.3 2.4.4 2.4.5 2.5 2.5.1 2.5.2 ANALYTICAL SOLUTIONS OF LINEAR TIME-VARYING DIFFERENTIAL EQUATIONS * 38 SOLUTIONS OF TIME-VARYING DIFFERENTIAL EQUATION SETS * 40 SOLUTIONS OF BOUNDARY VALUE PROBLEMS * 41 SOLUTIONS OF LINEAR MATRIX DIFFERENTIAL EQUATIONS * 42 ANALYTICAL SOLUTIONS OF LINEAR STATE SPACE EQUATIONS * 43 DIRECT SOLUTIONS OF STATE SPACE MODELS * 45 VIII * CONTENTS 2.5.3 2.5.4 SOLUTION OF SYLVESTER DIFFERENTIAL EQUATION * 46 KRONECKER PRODUCT-BASED SOLUTIONS OF SYLVESTER DIFFERENTIAL EQUATIONS * 47 2.6 2.6.1 2.6.2 ANALYTICAL SOLUTIONS TO SPECIAL NONLINEAR DIFFERENTIAL EQUATIONS * 48 SOLVABLE NONLINEAR DIFFERENTIAL EQUATIONS * 48 NONLINEAR DIFFERENTIAL EQUATIONS WHERE ANALYTICAL SOLUTIONS ARE NOT AVAILABLE * 50 2.7 EXERCISES * 51 3 3.1 INITIAL VALUE PROBLEMS * 55 INITIAL VALUE DESCRIPTIONS FOR FIRST-ORDER EXPLICIT DIFFERENTIAL EQUATIONS * 55 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.4 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.5 MATHEMATICAL FORMS OF INITIAL VALUE PROBLEMS * 55 EXISTENCE AND UNIQUENESS OF SOLUTIONS * 56 IMPLEMENTATION OF FIXED-STEP NUMERICAL ALGORITHMS * 57 EULER * S METHOD * 57 SECOND-ORDER RUNGE-KUTTA ALGORITHM * 60 FOURTH-ORDER RUNGE-KUTTA ALGORITHM * 62 GILL * S ALGORITHM * 64 THE MTH ORDER RUNGE-KUTTA ALGORITHM * 65 MULTISTEP ALGORITHMS AND IMPLEMENTATION * 68 VARIABLE-STEP NUMERICAL ALGORITHMS AND IMPLEMENTATIONS * 70 MEASURES TO INCREASE EFFICIENCY * 71 AN INTRODUCTION TO VARIABLE-STEP ALGORITHMS * 72 THE 4/5TH ORDER RUNGE-KUTTA VARIABLE-STEP ALGORITHM * 73 THE DIFFERENTIAL EQUATION SOLVER PROVIDED IN MATLAB * 74 SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH ADDITIONAL PARAMETERS * 80 AVOIDING THE USE OF ADDITIONAL PARAMETERS * 82 VALIDATIONS OF NUMERICAL SOLUTIONS * 83 VALIDATION OF THE COMPUTATION RESULTS * 83 DYNAMIC MANIPULATION OF INTERMEDIATE RESULTS * 86 MORE ACCURATE SOLVERS * 87 STEP-SIZES AND FIXED-STEP DISPLAY * 88 DEMONSTRATIONS OF HIGH-ORDER NONLINEAR DIFFERENTIAL EQUATIONS * 91 EXERCISES * 93 4 4.1 4.1.1 4.1.2 4.1.3 4.1.4 STANDARD FORM CONVERSIONS OF ORDINARY DIFFERENTIAL EQUATIONS * 99 CONVERSION METHOD FOR A SINGLE HIGH-ORDER DIFFERENTIAL EQUATION * 99 CONVERSION OF EXPLICIT EQUATIONS * 100 SOLUTIONS OF TIME-VARYING DIFFERENTIAL EQUATIONS * 104 SINGULARITIES IN DIFFERENTIAL EQUATIONS * 106 STATE AUGMENTATION FOR CONSTANT PARAMETERS * 108 CONTENTS * IX 4.2 CONVERSIONS OF COMPLICATED HIGH-ORDER DIFFERENTIAL EQUATIONS * 109 4.2.1 EQUATIONS CONTAINING THE SQUARE OF THE HIGHEST-ORDER DERIVATIVE * 110 4.2.2 EQUATIONS CONTAINING ODD POWERS * 112 4.2.3 EQUATIONS CONTAINING NONLINEAR OPERATIONS * 113 4.3 CONVERSIONS OF DIFFERENTIAL EQUATION SETS * 114 4.3.1 SIMPLE EXPLICIT DIFFERENTIAL EQUATION SETS * 115 4.3.2 LIMITATIONS WITH FIXED-STEP METHODS * 122 4.3.3 SIMPLE IMPLICIT DIFFERENTIAL EQUATIONS * 124 4.3.4 EVEN MORE COMPLICATED NONLINEAR DIFFERENTIAL EQUATIONS * 127 4.4 CONVERSIONS FOR MATRIX DIFFERENTIAL EQUATIONS * 129 4.4.1 CONVERSION AND SOLUTIONS OF DIFFERENTIAL EQUATIONS IN MATRIX FORM ----- 129 4.4.2 SYLVESTER DIFFERENTIAL EQUATIONS * 132 4.4.3 RICCATI DIFFERENTIAL EQUATIONS * 133 4.5 CONVERSIONS OF A CLASS OF VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS * 135 4.6 EXERCISES * 139 5 SPECIAL DIFFERENTIAL EQUATIONS * 145 5.1 STIFF DIFFERENTIAL EQUATIONS * 145 5.1.1 TIME CONSTANTS IN LINEAR DIFFERENTIAL EQUATIONS * 146 5.1.2 DEMONSTRATIONS OF STIFF PHENOMENA * 146 5.1.3 DIRECT SOLUTION OF STIFF DIFFERENTIAL EQUATIONS * 149 5.1.4 STIFFNESS DETECTION * 152 5.1.5 FIXED-STEP SOLUTION OF STIFF DIFFERENTIAL EQUATIONS * 157 5.2 IMPLICIT DIFFERENTIAL EQUATIONS * 158 5.2.1 MATHEMATICAL DESCRIPTION OF IMPLICIT DIFFERENTIAL EQUATIONS * 159 5.2.2 CONSISTENT INITIAL VALUE TRANSFORMATION * 160 5.2.3 DIRECT SOLUTION OF IMPLICIT DIFFERENTIAL EQUATIONS * 163 5.2.4 IMPLICIT DIFFERENTIAL EQUATIONS WITH MULTIPLE SOLUTIONS * 166 5.3 DIFFERENTIAL-ALGEBRAIC EQUATIONS * 168 5.3.1 GENERAL FORM OF DIFFERENTIAL-ALGEBRAIC EQUATIONS * 168 5.3.2 INDICES OF DIFFERENTIAL-ALGEBRAIC EQUATIONS * 169 5.3.3 SEMI-EXPLICIT DIFFERENTIAL-ALGEBRAIC EQUATIONS * 169 5.3.4 LIMITATIONS OF THE DIRECT SOLVER * 173 5.3.5 IMPLICIT SOLVERS FOR DIFFERENTIAL-ALGEBRAIC EQUATIONS * 175 5.3.6 INDEX REDUCTION FOR DIFFERENTIAL-ALGEBRAIC EQUATIONS * 180 5.4 SWITCHED DIFFERENTIAL EQUATIONS * 183 5.4.1 LINEAR SWITCHED DIFFERENTIAL EQUATIONS * 183 5.4.2 ZERO-CROSSING DETECTION AND EVENT HANDLING * 185 5.4.3 NONLINEAR SWITCHED DIFFERENTIAL EQUATIONS * 188 5.4.4 DISCONTINUOUS DIFFERENTIAL EQUATIONS * 190 5.5 LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS * 191 X * CONTENTS 5.5.1 TRANSFER FUNCTION MODEL FOR LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS * 192 5.5.2 5.5.3 5.6 ERRONEOUS METHODS IN CONTINUOUS STOCHASTIC SYSTEM SIMULATION * 193 DISCRETIZING STOCHASTIC LINEAR SYSTEMS * 195 EXERCISES * 199 6 6.1 DELAY DIFFERENTIAL EQUATIONS * 205 NUMERICAL SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS WITH CONSTANT DELAYS ----- 205 6.1.1 6.1.2 6.1.3 6.2 6.2.1 6.2.2 6.2.3 6.2.4 6.3 6.3.1 6.3.2 6.4 6.5 ORDINARY AND DELAY DIFFERENTIAL EQUATIONS * 205 DELAY DIFFERENTIAL EQUATION WITH ZERO HISTORY FUNCTIONS * 207 NONZERO HISTORY FUNCTIONS * 212 DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS * 214 VARIABLE DELAY MODELS * 215 TIME-DEPENDENT DELAYS * 215 STATE-DEPENDENT DELAYS * 219 DELAY DIFFERENTIAL EQUATIONS WITH GENERALIZED DELAYS * 221 NEUTRAL-TYPE DELAY DIFFERENTIAL EQUATIONS * 222 NEUTRAL-TYPE EQUATIONS * 223 NEUTRAL-TYPE DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS * 226 VOLTERRA DIFFERENTIAL EQUATIONS WITH DELAYS * 228 EXERCISES * 229 7 7.1 7.1.1 PROPERTIES AND BEHAVIORS OF ORDINARY DIFFERENTIAL EQUATIONS * 233 STABILITY OF DIFFERENTIAL EQUATIONS * 233 STABILITY OF LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS * 233 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 ROUTH-HURWITZ STABILITY CRITERION * 236 LYAPUNOV FUNCTION AND LYAPUNOV STABILITY * 239 AUTONOMOUS CONVERSION OF TIME-VARYING DIFFERENTIAL EQUATIONS * 240 STABILITY ASSESSMENT OF NONLINEAR SYSTEMS BY EXAMPLES * 241 STABILITY ASSESSMENT OF COMPLICATED SYSTEMS WITH SIMULATION METHODS ----- 243 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.3 7.3.1 7.3.2 7.3.3 SPECIAL BEHAVIORS OF DIFFERENTIAL EQUATIONS * 246 LIMIT CYCLES * 246 PERIODIC SOLUTIONS * 251 CHAOS AND ATTRACTORS * 254 POINCARE MAPPING * 259 LINEARIZATION APPROXIMATION OF DIFFERENTIAL EQUATIONS * 261 EQUILIBRIUM POINTS ----- 261 LINEARIZATION OF NONLINEAR DIFFERENTIAL EQUATIONS * 265 PROPERTIES OF EQUILIBRIA * 269 CONTENTS * XI 7.4 7.5 BIFURCATION OF DIFFERENTIAL EQUATIONS * 269 EXERCISES * 270 8 8.1 8.1.1 8.1.2 FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS * 273 DEFINITIONS AND NUMERICAL COMPUTATION IN FRACTIONAL CALCULUS * 273 DEFINITIONS OF FRACTIONAL CALCULUS * 274 RELATIONSHIPS AND PROPERTIES OF DIFFERENT FRACTIONAL CALCULUS DEFINITIONS * 275 8.1.3 8.1.4 8.2 NUMERICAL COMPUTATION FOR GRUNWALD-LETNIKOV DERIVATIVES * 277 NUMERICAL COMPUTATION FOR CAPUTO DERIVATIVES * 277 ANALYTICAL SOLUTION OF LINEAR COMMENSURATE-ORDER DIFFERENTIAL EQUATIONS * 279 8.2.1 8.2.2 8.2.3 8.2.4 8.3 MITTAG-LEFFLER FUNCTIONS * 279 COMMENSURATE-ORDER LINEAR DIFFERENTIAL EQUATIONS * 280 AN IMPORTANT LAPLACE TRANSFORM FORMULA * 281 PARTIAL FRACTION EXPANSION-BASED ANALYTICAL APPROACH * 282 NUMERICAL SOLUTIONS OF LINEAR FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS * 287 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.4 8.4.1 8.4.2 8.4.3 8.5 A CLOSED-FORM SOLUTION * 287 RIEMANN-LIOUVILLE DIFFERENTIAL EQUATIONS * 289 CAPUTO DIFFERENTIAL EQUATIONS * 291 COMPUTING EQUIVALENT INITIAL VALUES * 294 HIGH PRECISION ALGORITHMS * 297 SOLUTION OF NONLINEAR FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS * 300 PREDICTOR METHOD * 300 CORRECTOR METHOD * 304 MATRIX METHOD FOR IMPLICIT CAPUTO DIFFERENTIAL EQUATIONS * 305 EXERCISES * 308 9 9.1 9.1.1 9.1.2 9.2 BLOCK DIAGRAM SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS * 311 SIMULINK ESSENTIALS * 312 AN INTRODUCTION TO SIMULINK * 312 RELEVANT BLOCKS IN SIMULINK * 312 BLOCK DIAGRAM MODELING METHODOLOGIES IN DIFFERENTIAL EQUATIONS ----- 314 9.2.1 9.2.2 9.2.3 9.2.4 9.3 9.3.1 9.3.2 INTEGRATOR CHAINS AND KEY SIGNAL GENERATION * 314 DIFFERENTIAL EQUATION DESCRIPTION METHODS * 315 SOLUTIONS OF DIFFERENTIAL EQUATIONS * 318 ALGORITHMS AND PARAMETER SETTINGS * 319 MODELING EXAMPLES OF DIFFERENTIAL EQUATIONS * 321 SIMPLE DIFFERENTIAL EQUATIONS * 321 DIFFERENTIAL-ALGEBRAIC EQUATIONS * 325 XII * CONTENTS 9.3.3 SWITCHED DIFFERENTIAL EQUATIONS * 327 9.3.4 DISCONTINUOUS DIFFERENTIAL EQUATIONS * 330 9.3.5 DELAY DIFFERENTIAL EQUATIONS * 330 9.3.6 DELAY DIFFERENTIAL EQUATIONS WITH NONZERO HISTORY FUNCTIONS * 333 9.3.7 STOCHASTIC DIFFERENTIAL EQUATIONS * 334 9.4 SIMULINK MODELING OF FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS * 336 9.4.1 FRACTIONAL-ORDER OPERATOR BLOCK * 337 9.4.2 MODELING AND SOLUTION OF RIEMANN-LIOUVILLE DIFFERENTIAL EQUATIONS * 339 9.4.3 BLOCK FOR CAPUTO DERIVATIVES * 341 9.4.4 MODELING AND SOLVING OF CAPUTO DIFFERENTIAL EQUATIONS * 341 9.4.5 FRACTIONAL-ORDER DELAY DIFFERENTIAL EQUATIONS * 344 9.5 EXERCISES * 346 10 BOUNDARY VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS * 349 10.1 STANDARD BOUNDARY VALUE PROBLEMS * 349 10.2 SHOOTING METHODS IN TWO-POINT BOUNDARY VALUE PROBLEMS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS * 350 10.2.1 SHOOTING ALGORITHMS FOR LINEAR TIME-VARYING DIFFERENTIAL EQUATIONS * 351 10.2.2 FINITE DIFFERENCE ALGORITHM FOR LINEAR DIFFERENTIAL EQUATIONS * 354 10.2.3 SHOOTING ALGORITHMS FOR NONLINEAR DIFFERENTIAL EQUATIONS * 357 10.3 TWO-POINT BOUNDARY VALUE PROBLEMS FOR HIGH-ORDER DIFFERENTIAL EQUATIONS * 360 10.3.1 DIRECT SOLVER IN MATLAB * 361 10.3.2 SOLUTION OF SIMPLE BOUNDARY VALUE PROBLEMS * 362 10.3.3 DESCRIPTIONS OF COMPLICATED BOUNDARY CONDITIONS * 366 10.3.4 BOUNDARY VALUE PROBLEMS WITH UNDETERMINED COEFFICIENTS * 368 10.3.5 BOUNDARY VALUE PROBLEMS WITH SEMI-INFINITE INTERVALS * 370 10.3.6 DIFFERENTIAL EQUATIONS WITH FLOATING BOUNDARY VALUES * 372 10.3.7 BOUNDARY VALUE PROBLEMS OF INTEGRO-DIFFERENTIAL EQUATIONS * 373 10.4 OPTIMIZATION-BASED BOUNDARY VALUE PROBLEM SOLUTIONS * 374 10.4.1 ILLUSTRATIVE EXAMPLE TO SIMPLE BOUNDARY VALUE PROBLEMS * 375 10.4.2 BOUNDARY VALUE PROBLEMS FOR IMPLICIT DIFFERENTIAL EQUATIONS * 376 10.4.3 BOUNDARY VALUE PROBLEMS FOR DELAY DIFFERENTIAL EQUATIONS * 379 10.4.4 MULTIPOINT BOUNDARY VALUE PROBLEMS * 381 10.4.5 FLOATING BOUNDARY VALUE PROBLEMS REVISITED * 383 10.4.6 BOUNDARY VALUE PROBLEMS FOR BLOCK DIAGRAMS * 384 10.4.7 BOUNDARY VALUE PROBLEMS FOR FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS * 386 10.5 EXERCISES ------ 387 CONTENTS * XIII 11 PARTIAL DIFFERENTIAL EQUATIONS * 391 11.1 NUMERICAL SOLUTIONS OF DIFFUSION EQUATIONS * 392 11.1.1 MATHEMATICAL FORM AND ANALYTICAL SOLUTIONS OF ONE-DIMENSIONAL DIFFUSION EQUATIONS * 392 11.1.2 DISCRETIZING DIFFUSION EQUATIONS ----- 393 11.1.3 INHOMOGENEOUS DIFFUSION EQUATIONS * 397 11.1.4 MULTIDIMENSIONAL DIFFUSION EQUATIONS * 399 11.2 SEVERAL SPECIAL FORMS OF PARTIAL DIFFERENTIAL EQUATIONS * 399 11.2.1 CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS * 400 11.2.2 EIGENVALUE-TYPE PARTIAL DIFFERENTIAL EQUATIONS * 401 11.2.3 CLASSIFICATION OF BOUNDARY CONDITIONS * 402 11.3 USER INTERFACE OF TYPICAL TWO-DIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS * 402 11.3.1 AN INTRODUCTION OF THE USER INTERFACE * 402 11.3.2 GEOMETRIC REGION DESIGN * 404 11.3.3 BOUNDARY CONDITION DESCRIPTION * 405 11.3.4 EXAMPLES OF PARTIAL DIFFERENTIAL EQUATION SOLUTIONS * 406 11.3.5 OTHER SOLUTION DISPLAY METHODS * 407 11.3.6 PARTIAL DIFFERENTIAL EQUATIONS WITH FUNCTIONAL COEFFICIENTS * 409 11.4 SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS * 410 11.4.1 CREATING A BLANK PARTIAL DIFFERENTIAL EQUATION OBJECT * 411 11.4.2 STATEMENT DESCRIPTION OF GEOMETRIC REGIONS * 411 11.4.3 BOUNDARY AND INITIAL CONDITION DESCRIPTIONS * 415 11.4.4 PARTIAL DIFFERENTIAL EQUATIONS DESCRIPTIONS * 415 11.4.5 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS * 417 11.5 EXERCISES * 423 BIBLIOGRAPHY * 425 MATLAB FUNCTION INDEX * 429 INDEX ----- 433
adam_txt CONTENTS PREFACE * V 1 1.1 1.1.1 1.1.2 1.1.3 1.2 1.3 1.4 AN INTRODUCTION TO DIFFERENTIAL EQUATIONS * 1 INTRODUCTION TO DIFFERENTIAL EQUATION MODELING * 1 MODELING OF AN ELECTRIC CIRCUIT * 1 MODELING IN MECHANICAL SYSTEMS * 3 MODELS IN SOCIAL SYSTEMS * 4 A BRIEF HISTORY OF DIFFERENTIAL EQUATIONS * 6 OUTLINE AND MAIN TOPICS IN THE BOOK * 8 EXERCISES * 10 2 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.3 ANALYTICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS * 11 ANALYTICAL SOLUTIONS OF FIRST-ORDER DIFFERENTIAL EQUATIONS * 11 DIFFERENTIAL EQUATION SOLVABLE BY SIMPLE INTEGRALS * 12 HOMOGENEOUS DIFFERENTIAL EQUATIONS * 13 INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS * 14 NONLINEAR DIFFERENTIAL EQUATIONS WITH SEPARABLE VARIABLES * 15 SPECIAL FUNCTIONS AND SECOND-ORDER DIFFERENTIAL EQUATIONS * 17 GAMMA FUNCTION * 17 HYPERGEOMETRIC FUNCTIONS * 19 BESSEL DIFFERENTIAL EQUATIONS * 20 LEGENDRE DIFFERENTIAL EQUATIONS AND FUNCTIONS * 22 AIRY FUNCTIONS ----- 23 SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS * 25 2.3.1 MATHEMATICAL MODELING OF LINEAR CONSTANT-COEFFICIENT DIFFERENTIAL EQUATIONS * 25 2.3.2 2.3.3 2.3.4 2.4 2.4.1 2.4.2 LAPLACE TRANSFORM-BASED SOLUTIONS * 26 SOLUTIONS OF INHOMOGENEOUS DIFFERENTIAL EQUATIONS * 28 SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH NONZERO INITIAL VALUES * 29 ANALYTICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS * 32 ANALYTICAL SOLUTIONS OF SIMPLE DIFFERENTIAL EQUATIONS * 32 ANALYTICAL SOLUTIONS OF HIGH-ORDER LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS * 35 2.4.3 2.4.4 2.4.5 2.5 2.5.1 2.5.2 ANALYTICAL SOLUTIONS OF LINEAR TIME-VARYING DIFFERENTIAL EQUATIONS * 38 SOLUTIONS OF TIME-VARYING DIFFERENTIAL EQUATION SETS * 40 SOLUTIONS OF BOUNDARY VALUE PROBLEMS * 41 SOLUTIONS OF LINEAR MATRIX DIFFERENTIAL EQUATIONS * 42 ANALYTICAL SOLUTIONS OF LINEAR STATE SPACE EQUATIONS * 43 DIRECT SOLUTIONS OF STATE SPACE MODELS * 45 VIII * CONTENTS 2.5.3 2.5.4 SOLUTION OF SYLVESTER DIFFERENTIAL EQUATION * 46 KRONECKER PRODUCT-BASED SOLUTIONS OF SYLVESTER DIFFERENTIAL EQUATIONS * 47 2.6 2.6.1 2.6.2 ANALYTICAL SOLUTIONS TO SPECIAL NONLINEAR DIFFERENTIAL EQUATIONS * 48 SOLVABLE NONLINEAR DIFFERENTIAL EQUATIONS * 48 NONLINEAR DIFFERENTIAL EQUATIONS WHERE ANALYTICAL SOLUTIONS ARE NOT AVAILABLE * 50 2.7 EXERCISES * 51 3 3.1 INITIAL VALUE PROBLEMS * 55 INITIAL VALUE DESCRIPTIONS FOR FIRST-ORDER EXPLICIT DIFFERENTIAL EQUATIONS * 55 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.4 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.5 MATHEMATICAL FORMS OF INITIAL VALUE PROBLEMS * 55 EXISTENCE AND UNIQUENESS OF SOLUTIONS * 56 IMPLEMENTATION OF FIXED-STEP NUMERICAL ALGORITHMS * 57 EULER * S METHOD * 57 SECOND-ORDER RUNGE-KUTTA ALGORITHM * 60 FOURTH-ORDER RUNGE-KUTTA ALGORITHM * 62 GILL * S ALGORITHM * 64 THE MTH ORDER RUNGE-KUTTA ALGORITHM * 65 MULTISTEP ALGORITHMS AND IMPLEMENTATION * 68 VARIABLE-STEP NUMERICAL ALGORITHMS AND IMPLEMENTATIONS * 70 MEASURES TO INCREASE EFFICIENCY * 71 AN INTRODUCTION TO VARIABLE-STEP ALGORITHMS * 72 THE 4/5TH ORDER RUNGE-KUTTA VARIABLE-STEP ALGORITHM * 73 THE DIFFERENTIAL EQUATION SOLVER PROVIDED IN MATLAB * 74 SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH ADDITIONAL PARAMETERS * 80 AVOIDING THE USE OF ADDITIONAL PARAMETERS * 82 VALIDATIONS OF NUMERICAL SOLUTIONS * 83 VALIDATION OF THE COMPUTATION RESULTS * 83 DYNAMIC MANIPULATION OF INTERMEDIATE RESULTS * 86 MORE ACCURATE SOLVERS * 87 STEP-SIZES AND FIXED-STEP DISPLAY * 88 DEMONSTRATIONS OF HIGH-ORDER NONLINEAR DIFFERENTIAL EQUATIONS * 91 EXERCISES * 93 4 4.1 4.1.1 4.1.2 4.1.3 4.1.4 STANDARD FORM CONVERSIONS OF ORDINARY DIFFERENTIAL EQUATIONS * 99 CONVERSION METHOD FOR A SINGLE HIGH-ORDER DIFFERENTIAL EQUATION * 99 CONVERSION OF EXPLICIT EQUATIONS * 100 SOLUTIONS OF TIME-VARYING DIFFERENTIAL EQUATIONS * 104 SINGULARITIES IN DIFFERENTIAL EQUATIONS * 106 STATE AUGMENTATION FOR CONSTANT PARAMETERS * 108 CONTENTS * IX 4.2 CONVERSIONS OF COMPLICATED HIGH-ORDER DIFFERENTIAL EQUATIONS * 109 4.2.1 EQUATIONS CONTAINING THE SQUARE OF THE HIGHEST-ORDER DERIVATIVE * 110 4.2.2 EQUATIONS CONTAINING ODD POWERS * 112 4.2.3 EQUATIONS CONTAINING NONLINEAR OPERATIONS * 113 4.3 CONVERSIONS OF DIFFERENTIAL EQUATION SETS * 114 4.3.1 SIMPLE EXPLICIT DIFFERENTIAL EQUATION SETS * 115 4.3.2 LIMITATIONS WITH FIXED-STEP METHODS * 122 4.3.3 SIMPLE IMPLICIT DIFFERENTIAL EQUATIONS * 124 4.3.4 EVEN MORE COMPLICATED NONLINEAR DIFFERENTIAL EQUATIONS * 127 4.4 CONVERSIONS FOR MATRIX DIFFERENTIAL EQUATIONS * 129 4.4.1 CONVERSION AND SOLUTIONS OF DIFFERENTIAL EQUATIONS IN MATRIX FORM ----- 129 4.4.2 SYLVESTER DIFFERENTIAL EQUATIONS * 132 4.4.3 RICCATI DIFFERENTIAL EQUATIONS * 133 4.5 CONVERSIONS OF A CLASS OF VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS * 135 4.6 EXERCISES * 139 5 SPECIAL DIFFERENTIAL EQUATIONS * 145 5.1 STIFF DIFFERENTIAL EQUATIONS * 145 5.1.1 TIME CONSTANTS IN LINEAR DIFFERENTIAL EQUATIONS * 146 5.1.2 DEMONSTRATIONS OF STIFF PHENOMENA * 146 5.1.3 DIRECT SOLUTION OF STIFF DIFFERENTIAL EQUATIONS * 149 5.1.4 STIFFNESS DETECTION * 152 5.1.5 FIXED-STEP SOLUTION OF STIFF DIFFERENTIAL EQUATIONS * 157 5.2 IMPLICIT DIFFERENTIAL EQUATIONS * 158 5.2.1 MATHEMATICAL DESCRIPTION OF IMPLICIT DIFFERENTIAL EQUATIONS * 159 5.2.2 CONSISTENT INITIAL VALUE TRANSFORMATION * 160 5.2.3 DIRECT SOLUTION OF IMPLICIT DIFFERENTIAL EQUATIONS * 163 5.2.4 IMPLICIT DIFFERENTIAL EQUATIONS WITH MULTIPLE SOLUTIONS * 166 5.3 DIFFERENTIAL-ALGEBRAIC EQUATIONS * 168 5.3.1 GENERAL FORM OF DIFFERENTIAL-ALGEBRAIC EQUATIONS * 168 5.3.2 INDICES OF DIFFERENTIAL-ALGEBRAIC EQUATIONS * 169 5.3.3 SEMI-EXPLICIT DIFFERENTIAL-ALGEBRAIC EQUATIONS * 169 5.3.4 LIMITATIONS OF THE DIRECT SOLVER * 173 5.3.5 IMPLICIT SOLVERS FOR DIFFERENTIAL-ALGEBRAIC EQUATIONS * 175 5.3.6 INDEX REDUCTION FOR DIFFERENTIAL-ALGEBRAIC EQUATIONS * 180 5.4 SWITCHED DIFFERENTIAL EQUATIONS * 183 5.4.1 LINEAR SWITCHED DIFFERENTIAL EQUATIONS * 183 5.4.2 ZERO-CROSSING DETECTION AND EVENT HANDLING * 185 5.4.3 NONLINEAR SWITCHED DIFFERENTIAL EQUATIONS * 188 5.4.4 DISCONTINUOUS DIFFERENTIAL EQUATIONS * 190 5.5 LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS * 191 X * CONTENTS 5.5.1 TRANSFER FUNCTION MODEL FOR LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS * 192 5.5.2 5.5.3 5.6 ERRONEOUS METHODS IN CONTINUOUS STOCHASTIC SYSTEM SIMULATION * 193 DISCRETIZING STOCHASTIC LINEAR SYSTEMS * 195 EXERCISES * 199 6 6.1 DELAY DIFFERENTIAL EQUATIONS * 205 NUMERICAL SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS WITH CONSTANT DELAYS ----- 205 6.1.1 6.1.2 6.1.3 6.2 6.2.1 6.2.2 6.2.3 6.2.4 6.3 6.3.1 6.3.2 6.4 6.5 ORDINARY AND DELAY DIFFERENTIAL EQUATIONS * 205 DELAY DIFFERENTIAL EQUATION WITH ZERO HISTORY FUNCTIONS * 207 NONZERO HISTORY FUNCTIONS * 212 DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS * 214 VARIABLE DELAY MODELS * 215 TIME-DEPENDENT DELAYS * 215 STATE-DEPENDENT DELAYS * 219 DELAY DIFFERENTIAL EQUATIONS WITH GENERALIZED DELAYS * 221 NEUTRAL-TYPE DELAY DIFFERENTIAL EQUATIONS * 222 NEUTRAL-TYPE EQUATIONS * 223 NEUTRAL-TYPE DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS * 226 VOLTERRA DIFFERENTIAL EQUATIONS WITH DELAYS * 228 EXERCISES * 229 7 7.1 7.1.1 PROPERTIES AND BEHAVIORS OF ORDINARY DIFFERENTIAL EQUATIONS * 233 STABILITY OF DIFFERENTIAL EQUATIONS * 233 STABILITY OF LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS * 233 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 ROUTH-HURWITZ STABILITY CRITERION * 236 LYAPUNOV FUNCTION AND LYAPUNOV STABILITY * 239 AUTONOMOUS CONVERSION OF TIME-VARYING DIFFERENTIAL EQUATIONS * 240 STABILITY ASSESSMENT OF NONLINEAR SYSTEMS BY EXAMPLES * 241 STABILITY ASSESSMENT OF COMPLICATED SYSTEMS WITH SIMULATION METHODS ----- 243 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.3 7.3.1 7.3.2 7.3.3 SPECIAL BEHAVIORS OF DIFFERENTIAL EQUATIONS * 246 LIMIT CYCLES * 246 PERIODIC SOLUTIONS * 251 CHAOS AND ATTRACTORS * 254 POINCARE MAPPING * 259 LINEARIZATION APPROXIMATION OF DIFFERENTIAL EQUATIONS * 261 EQUILIBRIUM POINTS ----- 261 LINEARIZATION OF NONLINEAR DIFFERENTIAL EQUATIONS * 265 PROPERTIES OF EQUILIBRIA * 269 CONTENTS * XI 7.4 7.5 BIFURCATION OF DIFFERENTIAL EQUATIONS * 269 EXERCISES * 270 8 8.1 8.1.1 8.1.2 FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS * 273 DEFINITIONS AND NUMERICAL COMPUTATION IN FRACTIONAL CALCULUS * 273 DEFINITIONS OF FRACTIONAL CALCULUS * 274 RELATIONSHIPS AND PROPERTIES OF DIFFERENT FRACTIONAL CALCULUS DEFINITIONS * 275 8.1.3 8.1.4 8.2 NUMERICAL COMPUTATION FOR GRUNWALD-LETNIKOV DERIVATIVES * 277 NUMERICAL COMPUTATION FOR CAPUTO DERIVATIVES * 277 ANALYTICAL SOLUTION OF LINEAR COMMENSURATE-ORDER DIFFERENTIAL EQUATIONS * 279 8.2.1 8.2.2 8.2.3 8.2.4 8.3 MITTAG-LEFFLER FUNCTIONS * 279 COMMENSURATE-ORDER LINEAR DIFFERENTIAL EQUATIONS * 280 AN IMPORTANT LAPLACE TRANSFORM FORMULA * 281 PARTIAL FRACTION EXPANSION-BASED ANALYTICAL APPROACH * 282 NUMERICAL SOLUTIONS OF LINEAR FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS * 287 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.4 8.4.1 8.4.2 8.4.3 8.5 A CLOSED-FORM SOLUTION * 287 RIEMANN-LIOUVILLE DIFFERENTIAL EQUATIONS * 289 CAPUTO DIFFERENTIAL EQUATIONS * 291 COMPUTING EQUIVALENT INITIAL VALUES * 294 HIGH PRECISION ALGORITHMS * 297 SOLUTION OF NONLINEAR FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS * 300 PREDICTOR METHOD * 300 CORRECTOR METHOD * 304 MATRIX METHOD FOR IMPLICIT CAPUTO DIFFERENTIAL EQUATIONS * 305 EXERCISES * 308 9 9.1 9.1.1 9.1.2 9.2 BLOCK DIAGRAM SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS * 311 SIMULINK ESSENTIALS * 312 AN INTRODUCTION TO SIMULINK * 312 RELEVANT BLOCKS IN SIMULINK * 312 BLOCK DIAGRAM MODELING METHODOLOGIES IN DIFFERENTIAL EQUATIONS ----- 314 9.2.1 9.2.2 9.2.3 9.2.4 9.3 9.3.1 9.3.2 INTEGRATOR CHAINS AND KEY SIGNAL GENERATION * 314 DIFFERENTIAL EQUATION DESCRIPTION METHODS * 315 SOLUTIONS OF DIFFERENTIAL EQUATIONS * 318 ALGORITHMS AND PARAMETER SETTINGS * 319 MODELING EXAMPLES OF DIFFERENTIAL EQUATIONS * 321 SIMPLE DIFFERENTIAL EQUATIONS * 321 DIFFERENTIAL-ALGEBRAIC EQUATIONS * 325 XII * CONTENTS 9.3.3 SWITCHED DIFFERENTIAL EQUATIONS * 327 9.3.4 DISCONTINUOUS DIFFERENTIAL EQUATIONS * 330 9.3.5 DELAY DIFFERENTIAL EQUATIONS * 330 9.3.6 DELAY DIFFERENTIAL EQUATIONS WITH NONZERO HISTORY FUNCTIONS * 333 9.3.7 STOCHASTIC DIFFERENTIAL EQUATIONS * 334 9.4 SIMULINK MODELING OF FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS * 336 9.4.1 FRACTIONAL-ORDER OPERATOR BLOCK * 337 9.4.2 MODELING AND SOLUTION OF RIEMANN-LIOUVILLE DIFFERENTIAL EQUATIONS * 339 9.4.3 BLOCK FOR CAPUTO DERIVATIVES * 341 9.4.4 MODELING AND SOLVING OF CAPUTO DIFFERENTIAL EQUATIONS * 341 9.4.5 FRACTIONAL-ORDER DELAY DIFFERENTIAL EQUATIONS * 344 9.5 EXERCISES * 346 10 BOUNDARY VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS * 349 10.1 STANDARD BOUNDARY VALUE PROBLEMS * 349 10.2 SHOOTING METHODS IN TWO-POINT BOUNDARY VALUE PROBLEMS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS * 350 10.2.1 SHOOTING ALGORITHMS FOR LINEAR TIME-VARYING DIFFERENTIAL EQUATIONS * 351 10.2.2 FINITE DIFFERENCE ALGORITHM FOR LINEAR DIFFERENTIAL EQUATIONS * 354 10.2.3 SHOOTING ALGORITHMS FOR NONLINEAR DIFFERENTIAL EQUATIONS * 357 10.3 TWO-POINT BOUNDARY VALUE PROBLEMS FOR HIGH-ORDER DIFFERENTIAL EQUATIONS * 360 10.3.1 DIRECT SOLVER IN MATLAB * 361 10.3.2 SOLUTION OF SIMPLE BOUNDARY VALUE PROBLEMS * 362 10.3.3 DESCRIPTIONS OF COMPLICATED BOUNDARY CONDITIONS * 366 10.3.4 BOUNDARY VALUE PROBLEMS WITH UNDETERMINED COEFFICIENTS * 368 10.3.5 BOUNDARY VALUE PROBLEMS WITH SEMI-INFINITE INTERVALS * 370 10.3.6 DIFFERENTIAL EQUATIONS WITH FLOATING BOUNDARY VALUES * 372 10.3.7 BOUNDARY VALUE PROBLEMS OF INTEGRO-DIFFERENTIAL EQUATIONS * 373 10.4 OPTIMIZATION-BASED BOUNDARY VALUE PROBLEM SOLUTIONS * 374 10.4.1 ILLUSTRATIVE EXAMPLE TO SIMPLE BOUNDARY VALUE PROBLEMS * 375 10.4.2 BOUNDARY VALUE PROBLEMS FOR IMPLICIT DIFFERENTIAL EQUATIONS * 376 10.4.3 BOUNDARY VALUE PROBLEMS FOR DELAY DIFFERENTIAL EQUATIONS * 379 10.4.4 MULTIPOINT BOUNDARY VALUE PROBLEMS * 381 10.4.5 FLOATING BOUNDARY VALUE PROBLEMS REVISITED * 383 10.4.6 BOUNDARY VALUE PROBLEMS FOR BLOCK DIAGRAMS * 384 10.4.7 BOUNDARY VALUE PROBLEMS FOR FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS * 386 10.5 EXERCISES ------ 387 CONTENTS * XIII 11 PARTIAL DIFFERENTIAL EQUATIONS * 391 11.1 NUMERICAL SOLUTIONS OF DIFFUSION EQUATIONS * 392 11.1.1 MATHEMATICAL FORM AND ANALYTICAL SOLUTIONS OF ONE-DIMENSIONAL DIFFUSION EQUATIONS * 392 11.1.2 DISCRETIZING DIFFUSION EQUATIONS ----- 393 11.1.3 INHOMOGENEOUS DIFFUSION EQUATIONS * 397 11.1.4 MULTIDIMENSIONAL DIFFUSION EQUATIONS * 399 11.2 SEVERAL SPECIAL FORMS OF PARTIAL DIFFERENTIAL EQUATIONS * 399 11.2.1 CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS * 400 11.2.2 EIGENVALUE-TYPE PARTIAL DIFFERENTIAL EQUATIONS * 401 11.2.3 CLASSIFICATION OF BOUNDARY CONDITIONS * 402 11.3 USER INTERFACE OF TYPICAL TWO-DIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS * 402 11.3.1 AN INTRODUCTION OF THE USER INTERFACE * 402 11.3.2 GEOMETRIC REGION DESIGN * 404 11.3.3 BOUNDARY CONDITION DESCRIPTION * 405 11.3.4 EXAMPLES OF PARTIAL DIFFERENTIAL EQUATION SOLUTIONS * 406 11.3.5 OTHER SOLUTION DISPLAY METHODS * 407 11.3.6 PARTIAL DIFFERENTIAL EQUATIONS WITH FUNCTIONAL COEFFICIENTS * 409 11.4 SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS * 410 11.4.1 CREATING A BLANK PARTIAL DIFFERENTIAL EQUATION OBJECT * 411 11.4.2 STATEMENT DESCRIPTION OF GEOMETRIC REGIONS * 411 11.4.3 BOUNDARY AND INITIAL CONDITION DESCRIPTIONS * 415 11.4.4 PARTIAL DIFFERENTIAL EQUATIONS DESCRIPTIONS * 415 11.4.5 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS * 417 11.5 EXERCISES * 423 BIBLIOGRAPHY * 425 MATLAB FUNCTION INDEX * 429 INDEX ----- 433
any_adam_object 1
any_adam_object_boolean 1
author Xue, Dingyu
author_GND (DE-588)1098160967
author_facet Xue, Dingyu
author_role aut
author_sort Xue, Dingyu
author_variant d x dx
building Verbundindex
bvnumber BV046719736
classification_rvk ST 601
SK 500
ctrlnum (OCoLC)1125818660
(DE-599)DNB1197821368
dewey-full 515.350285
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.350285
dewey-search 515.350285
dewey-sort 3515.350285
dewey-tens 510 - Mathematics
discipline Informatik
Mathematik
discipline_str_mv Informatik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01939nam a2200469 c 4500</leader><controlfield tag="001">BV046719736</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221108 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200513s2020 gw a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110675245</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-3-11-067524-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110675242</subfield><subfield code="9">3-11-067524-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1125818660</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1197821368</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.350285</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 500</subfield><subfield code="0">(DE-625)143243:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xue, Dingyu</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1098160967</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential equation solutions with MATLAB</subfield><subfield code="c">Dingyü Xue</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="a">[Beijing]</subfield><subfield code="b">Tsinghua University Press</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 438 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter STEM</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH &amp; Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-067525-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-067531-3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1197821368/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=032129977&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032129977</subfield></datafield></record></collection>
id DE-604.BV046719736
illustrated Illustrated
index_date 2024-07-03T14:33:15Z
indexdate 2024-07-10T08:51:59Z
institution BVB
institution_GND (DE-588)10095502-2
isbn 9783110675245
3110675242
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032129977
oclc_num 1125818660
open_access_boolean
owner DE-634
DE-83
DE-703
DE-706
DE-19
DE-BY-UBM
DE-20
DE-11
owner_facet DE-634
DE-83
DE-703
DE-706
DE-19
DE-BY-UBM
DE-20
DE-11
physical XIII, 438 Seiten Illustrationen, Diagramme
publishDate 2020
publishDateSearch 2020
publishDateSort 2020
publisher De Gruyter
record_format marc
series2 De Gruyter STEM
spelling Xue, Dingyu Verfasser (DE-588)1098160967 aut
Differential equation solutions with MATLAB Dingyü Xue
Berlin ; Boston De Gruyter [2020]
[Beijing] Tsinghua University Press [2020]
© 2020
XIII, 438 Seiten Illustrationen, Diagramme
txt rdacontent
n rdamedia
nc rdacarrier
De Gruyter STEM
Differentialgleichung (DE-588)4012249-9 gnd rswk-swf
MATLAB (DE-588)4329066-8 gnd rswk-swf
Differentialgleichung (DE-588)4012249-9 s
MATLAB (DE-588)4329066-8 s
DE-604
Walter de Gruyter GmbH & Co. KG (DE-588)10095502-2 pbl
Erscheint auch als Online-Ausgabe, PDF 978-3-11-067525-2
Erscheint auch als Online-Ausgabe, EPUB 978-3-11-067531-3
B:DE-101 application/pdf https://d-nb.info/1197821368/04 Inhaltsverzeichnis
DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032129977&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Xue, Dingyu
Differential equation solutions with MATLAB
Differentialgleichung (DE-588)4012249-9 gnd
MATLAB (DE-588)4329066-8 gnd
subject_GND (DE-588)4012249-9
(DE-588)4329066-8
title Differential equation solutions with MATLAB
title_auth Differential equation solutions with MATLAB
title_exact_search Differential equation solutions with MATLAB
title_exact_search_txtP Differential equation solutions with MATLAB
title_full Differential equation solutions with MATLAB Dingyü Xue
title_fullStr Differential equation solutions with MATLAB Dingyü Xue
title_full_unstemmed Differential equation solutions with MATLAB Dingyü Xue
title_short Differential equation solutions with MATLAB
title_sort differential equation solutions with matlab
topic Differentialgleichung (DE-588)4012249-9 gnd
MATLAB (DE-588)4329066-8 gnd
topic_facet Differentialgleichung
MATLAB
url https://d-nb.info/1197821368/04
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032129977&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT xuedingyu differentialequationsolutionswithmatlab
AT walterdegruytergmbhcokg differentialequationsolutionswithmatlab