Statistics, Data Mining, and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Edition

Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ivezić, Željko 1965- (VerfasserIn), Connolly, Andrew J. (VerfasserIn), VanderPlas, Jake (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Princeton, NJ Princeton University Press [2019]
Schriftenreihe:Princeton Series in Modern Observational Astronomy 13
Schlagworte:
Online-Zugang:FAB01
FAW01
FCO01
FHA01
FHM01
FKE01
FLA01
UER01
UPA01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV046646110
003 DE-604
005 20210930
007 cr|uuu---uuuuu
008 200331s2019 |||| o||u| ||||||eng d
020 |a 9780691197050  |9 978-0-691-19705-0 
024 7 |a 10.1515/9780691197050  |2 doi 
035 |a (ZDB-23-DGG)9780691197050 
035 |a (OCoLC)1148077127 
035 |a (DE-599)BVBBV046646110 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-1046  |a DE-Aug4  |a DE-859  |a DE-860  |a DE-739  |a DE-29  |a DE-1043  |a DE-M347  |a DE-858 
082 0 |a 522/.85  |2 23 
100 1 |a Ivezić, Željko  |d 1965-  |e Verfasser  |0 (DE-588)1059448750  |4 aut 
245 1 0 |a Statistics, Data Mining, and Machine Learning in Astronomy  |b A Practical Python Guide for the Analysis of Survey Data, Updated Edition  |c Jacob T. VanderPlas, Andrew J. Connolly, Željko Ivezić, Alexander Gray 
264 1 |a Princeton, NJ  |b Princeton University Press  |c [2019] 
264 4 |c © 2020 
300 |a 1 online resource (552 pages)  |b 12 color + 187 b/w illus. 13 tables 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Princeton Series in Modern Observational Astronomy  |v 13 
500 |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 29. Feb 2020) 
520 |a Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth of practical analysis problems, evaluates the techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. Python code and sample data sets are provided for all applications described in the book. The supporting data sets have been carefully selected from contemporary astronomical surveys and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, engage with the different methods, and adapt them to their own fields of interest.An accessible textbook for students and an indispensable reference for researchers, this updated edition features new sections on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. The chapters have been revised throughout and the astroML code has been brought completely up to date.Fully revised and expandedDescribes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data setsFeatures real-world data sets from astronomical surveysUses a freely available Python codebase throughoutIdeal for graduate students, advanced undergraduates, and working astronomers 
546 |a In English 
650 7 |a SCIENCE / Astronomy  |2 bisacsh 
650 4 |a Astronomy  |x Data processing 
650 4 |a Python (Computer program language) 
650 4 |a Statistical astronomy 
700 1 |a Connolly, Andrew J.  |0 (DE-588)1201891744  |4 aut 
700 1 |a VanderPlas, Jake  |0 (DE-588)1122834322  |4 aut 
856 4 0 |u https://doi.org/10.1515/9780691197050  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-23-DGG  |a ZDB-23-DPC 
940 1 |q ZDB-23-DPC19 
999 |a oai:aleph.bib-bvb.de:BVB01-032057382 
966 e |u https://doi.org/10.1515/9780691197050?locatt=mode:legacy  |l FAB01  |p ZDB-23-DGG  |q FAB_PDA_DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9780691197050?locatt=mode:legacy  |l FAW01  |p ZDB-23-DGG  |q FAW_PDA_DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9780691197050?locatt=mode:legacy  |l FCO01  |p ZDB-23-DGG  |q FCO_PDA_DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9780691197050?locatt=mode:legacy  |l FHA01  |p ZDB-23-DGG  |q FHA_PDA_DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9780691197050?locatt=mode:legacy  |l FHM01  |p ZDB-23-DPC  |q ZDB-23-DPC19  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9780691197050?locatt=mode:legacy  |l FKE01  |p ZDB-23-DGG  |q FKE_PDA_DGG_Kauf  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9780691197050?locatt=mode:legacy  |l FLA01  |p ZDB-23-DGG  |q FLA_PDA_DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9780691197050?locatt=mode:legacy  |l UER01  |p ZDB-23-DGG  |q UER_PDA_DGG_Kauf  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9780691197050?locatt=mode:legacy  |l UPA01  |p ZDB-23-DGG  |q UPA_PDA_DGG  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1804181344058605568
adam_txt
any_adam_object
any_adam_object_boolean
author Ivezić, Željko 1965-
Connolly, Andrew J.
VanderPlas, Jake
author_GND (DE-588)1059448750
(DE-588)1201891744
(DE-588)1122834322
author_facet Ivezić, Željko 1965-
Connolly, Andrew J.
VanderPlas, Jake
author_role aut
aut
aut
author_sort Ivezić, Željko 1965-
author_variant ž i ži
a j c aj ajc
j v jv
building Verbundindex
bvnumber BV046646110
collection ZDB-23-DGG
ZDB-23-DPC
ctrlnum (ZDB-23-DGG)9780691197050
(OCoLC)1148077127
(DE-599)BVBBV046646110
dewey-full 522/.85
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 522 - Techniques, equipment & materials
dewey-raw 522/.85
dewey-search 522/.85
dewey-sort 3522 285
dewey-tens 520 - Astronomy and allied sciences
discipline Physik
discipline_str_mv Physik
doi_str_mv 10.1515/9780691197050
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04666nmm a2200565zcb4500</leader><controlfield tag="001">BV046646110</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210930 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200331s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691197050</subfield><subfield code="9">978-0-691-19705-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691197050</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9780691197050</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1148077127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046646110</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">522/.85</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ivezić, Željko</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1059448750</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistics, Data Mining, and Machine Learning in Astronomy</subfield><subfield code="b">A Practical Python Guide for the Analysis of Survey Data, Updated Edition</subfield><subfield code="c">Jacob T. VanderPlas, Andrew J. Connolly, Željko Ivezić, Alexander Gray</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (552 pages)</subfield><subfield code="b">12 color + 187 b/w illus. 13 tables</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Princeton Series in Modern Observational Astronomy</subfield><subfield code="v">13</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 29. Feb 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth of practical analysis problems, evaluates the techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. Python code and sample data sets are provided for all applications described in the book. The supporting data sets have been carefully selected from contemporary astronomical surveys and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, engage with the different methods, and adapt them to their own fields of interest.An accessible textbook for students and an indispensable reference for researchers, this updated edition features new sections on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. The chapters have been revised throughout and the astroML code has been brought completely up to date.Fully revised and expandedDescribes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data setsFeatures real-world data sets from astronomical surveysUses a freely available Python codebase throughoutIdeal for graduate students, advanced undergraduates, and working astronomers</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Astronomy</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astronomy</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical astronomy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Connolly, Andrew J.</subfield><subfield code="0">(DE-588)1201891744</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">VanderPlas, Jake</subfield><subfield code="0">(DE-588)1122834322</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691197050</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DPC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DPC19</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032057382</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197050?locatt=mode:legacy</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197050?locatt=mode:legacy</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197050?locatt=mode:legacy</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197050?locatt=mode:legacy</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197050?locatt=mode:legacy</subfield><subfield code="l">FHM01</subfield><subfield code="p">ZDB-23-DPC</subfield><subfield code="q">ZDB-23-DPC19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197050?locatt=mode:legacy</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197050?locatt=mode:legacy</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197050?locatt=mode:legacy</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UER_PDA_DGG_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197050?locatt=mode:legacy</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV046646110
illustrated Illustrated
index_date 2024-07-03T14:15:29Z
indexdate 2024-07-10T08:50:09Z
institution BVB
isbn 9780691197050
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032057382
oclc_num 1148077127
open_access_boolean
owner DE-1046
DE-Aug4
DE-859
DE-860
DE-739
DE-29
DE-1043
DE-M347
DE-858
owner_facet DE-1046
DE-Aug4
DE-859
DE-860
DE-739
DE-29
DE-1043
DE-M347
DE-858
physical 1 online resource (552 pages) 12 color + 187 b/w illus. 13 tables
psigel ZDB-23-DGG
ZDB-23-DPC
ZDB-23-DPC19
ZDB-23-DGG FAB_PDA_DGG
ZDB-23-DGG FAW_PDA_DGG
ZDB-23-DGG FCO_PDA_DGG
ZDB-23-DGG FHA_PDA_DGG
ZDB-23-DPC ZDB-23-DPC19
ZDB-23-DGG FKE_PDA_DGG_Kauf
ZDB-23-DGG FLA_PDA_DGG
ZDB-23-DGG UER_PDA_DGG_Kauf
ZDB-23-DGG UPA_PDA_DGG
publishDate 2019
publishDateSearch 2019
publishDateSort 2019
publisher Princeton University Press
record_format marc
series2 Princeton Series in Modern Observational Astronomy
spelling Ivezić, Željko 1965- Verfasser (DE-588)1059448750 aut
Statistics, Data Mining, and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Edition Jacob T. VanderPlas, Andrew J. Connolly, Željko Ivezić, Alexander Gray
Princeton, NJ Princeton University Press [2019]
© 2020
1 online resource (552 pages) 12 color + 187 b/w illus. 13 tables
txt rdacontent
c rdamedia
cr rdacarrier
Princeton Series in Modern Observational Astronomy 13
Description based on online resource; title from PDF title page (publisher's Web site, viewed 29. Feb 2020)
Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth of practical analysis problems, evaluates the techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. Python code and sample data sets are provided for all applications described in the book. The supporting data sets have been carefully selected from contemporary astronomical surveys and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, engage with the different methods, and adapt them to their own fields of interest.An accessible textbook for students and an indispensable reference for researchers, this updated edition features new sections on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. The chapters have been revised throughout and the astroML code has been brought completely up to date.Fully revised and expandedDescribes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data setsFeatures real-world data sets from astronomical surveysUses a freely available Python codebase throughoutIdeal for graduate students, advanced undergraduates, and working astronomers
In English
SCIENCE / Astronomy bisacsh
Astronomy Data processing
Python (Computer program language)
Statistical astronomy
Connolly, Andrew J. (DE-588)1201891744 aut
VanderPlas, Jake (DE-588)1122834322 aut
https://doi.org/10.1515/9780691197050 Verlag URL des Erstveröffentlichers Volltext
spellingShingle Ivezić, Željko 1965-
Connolly, Andrew J.
VanderPlas, Jake
Statistics, Data Mining, and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Edition
SCIENCE / Astronomy bisacsh
Astronomy Data processing
Python (Computer program language)
Statistical astronomy
title Statistics, Data Mining, and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Edition
title_auth Statistics, Data Mining, and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Edition
title_exact_search Statistics, Data Mining, and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Edition
title_exact_search_txtP Statistics, Data Mining, and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Edition
title_full Statistics, Data Mining, and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Edition Jacob T. VanderPlas, Andrew J. Connolly, Željko Ivezić, Alexander Gray
title_fullStr Statistics, Data Mining, and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Edition Jacob T. VanderPlas, Andrew J. Connolly, Željko Ivezić, Alexander Gray
title_full_unstemmed Statistics, Data Mining, and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Edition Jacob T. VanderPlas, Andrew J. Connolly, Željko Ivezić, Alexander Gray
title_short Statistics, Data Mining, and Machine Learning in Astronomy
title_sort statistics data mining and machine learning in astronomy a practical python guide for the analysis of survey data updated edition
title_sub A Practical Python Guide for the Analysis of Survey Data, Updated Edition
topic SCIENCE / Astronomy bisacsh
Astronomy Data processing
Python (Computer program language)
Statistical astronomy
topic_facet SCIENCE / Astronomy
Astronomy Data processing
Python (Computer program language)
Statistical astronomy
url https://doi.org/10.1515/9780691197050
work_keys_str_mv AT iveziczeljko statisticsdataminingandmachinelearninginastronomyapracticalpythonguidefortheanalysisofsurveydataupdatededition
AT connollyandrewj statisticsdataminingandmachinelearninginastronomyapracticalpythonguidefortheanalysisofsurveydataupdatededition
AT vanderplasjake statisticsdataminingandmachinelearninginastronomyapracticalpythonguidefortheanalysisofsurveydataupdatededition