Hidden Semi-Markov models theory, algorithms and applications

Hidden semi-Markov models (HSMMs) are among the most important models in the area of artificial intelligence / machine learning. Since the first HSMM was introduced in 1980 for machine recognition of speech, three other HSMMs have been proposed, with various definitions of duration and observation d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Yu, Shun-Zheng (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Amsterdam, Netherlands Elsevier [2016]
Schriftenreihe:Computer science reviews and trends
Schlagworte:
Online-Zugang:FLA01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV046126956
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 190827s2016 |||| o||u| ||||||eng d
020 |a 9780128027714  |9 978-0-12-802771-4 
020 |a 0128027711  |9 0-12-802771-1 
020 |a 0128027673  |9 0-12-802767-3 
020 |a 9780128027677  |9 978-0-12-802767-7 
035 |a (ZDB-33-ESD)ocn927103680 
035 |a (OCoLC)927103680 
035 |a (DE-599)BVBBV046126956 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
082 0 |a 519.2/33  |2 23 
100 1 |a Yu, Shun-Zheng  |e Verfasser  |4 aut 
245 1 0 |a Hidden Semi-Markov models  |b theory, algorithms and applications  |c Shun-Zheng Yu 
264 1 |a Amsterdam, Netherlands  |b Elsevier  |c [2016] 
264 4 |c © 2016 
300 |a 1 online resource  |b illustrations 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Computer science reviews and trends 
500 |a Includes bibliographical references 
520 |a Hidden semi-Markov models (HSMMs) are among the most important models in the area of artificial intelligence / machine learning. Since the first HSMM was introduced in 1980 for machine recognition of speech, three other HSMMs have been proposed, with various definitions of duration and observation distributions. Those models have different expressions, algorithms, computational complexities, and applicable areas, without explicitly interchangeable forms. Hidden Semi-Markov Models: Theory, Algorithms and Applications provides a unified and foundational approach to HSMMs, including various HSMMs (such as the explicit duration, variable transition, and residential time of HSMMs), inference and estimation algorithms, implementation methods and application instances. Learn new developments and state-of-the-art emerging topics as they relate to HSMMs, presented with examples drawn from medicine, engineering and computer science 
650 7 |a MATHEMATICS / Applied  |2 bisacsh 
650 7 |a MATHEMATICS / Probability & Statistics / General  |2 bisacsh 
650 7 |a Markov processes  |2 fast 
650 7 |a Renewal theory  |2 fast 
650 4 |a Markov processes 
650 4 |a Renewal theory 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780128027677 
856 4 0 |u http://www.sciencedirect.com/science/book/9780128027677  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-33-ESD 
999 |a oai:aleph.bib-bvb.de:BVB01-031507410 
966 e |u http://www.sciencedirect.com/science/book/9780128027677  |l FLA01  |p ZDB-33-ESD  |q FLA_PDA_ESD  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1804180447603720192
any_adam_object
author Yu, Shun-Zheng
author_facet Yu, Shun-Zheng
author_role aut
author_sort Yu, Shun-Zheng
author_variant s z y szy
building Verbundindex
bvnumber BV046126956
collection ZDB-33-ESD
ctrlnum (ZDB-33-ESD)ocn927103680
(OCoLC)927103680
(DE-599)BVBBV046126956
dewey-full 519.2/33
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.2/33
dewey-search 519.2/33
dewey-sort 3519.2 233
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02622nmm a2200469zc 4500</leader><controlfield tag="001">BV046126956</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190827s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128027714</subfield><subfield code="9">978-0-12-802771-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128027711</subfield><subfield code="9">0-12-802771-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128027673</subfield><subfield code="9">0-12-802767-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128027677</subfield><subfield code="9">978-0-12-802767-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-ESD)ocn927103680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)927103680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046126956</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2/33</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, Shun-Zheng</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hidden Semi-Markov models</subfield><subfield code="b">theory, algorithms and applications</subfield><subfield code="c">Shun-Zheng Yu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam, Netherlands</subfield><subfield code="b">Elsevier</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Computer science reviews and trends</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hidden semi-Markov models (HSMMs) are among the most important models in the area of artificial intelligence / machine learning. Since the first HSMM was introduced in 1980 for machine recognition of speech, three other HSMMs have been proposed, with various definitions of duration and observation distributions. Those models have different expressions, algorithms, computational complexities, and applicable areas, without explicitly interchangeable forms. Hidden Semi-Markov Models: Theory, Algorithms and Applications provides a unified and foundational approach to HSMMs, including various HSMMs (such as the explicit duration, variable transition, and residential time of HSMMs), inference and estimation algorithms, implementation methods and application instances. Learn new developments and state-of-the-art emerging topics as they relate to HSMMs, presented with examples drawn from medicine, engineering and computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Applied</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Probability &amp; Statistics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Markov processes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Renewal theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renewal theory</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780128027677</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780128027677</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031507410</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9780128027677</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="q">FLA_PDA_ESD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV046126956
illustrated Illustrated
indexdate 2024-07-10T08:35:54Z
institution BVB
isbn 9780128027714
0128027711
0128027673
9780128027677
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-031507410
oclc_num 927103680
open_access_boolean
physical 1 online resource illustrations
psigel ZDB-33-ESD
ZDB-33-ESD FLA_PDA_ESD
publishDate 2016
publishDateSearch 2016
publishDateSort 2016
publisher Elsevier
record_format marc
series2 Computer science reviews and trends
spelling Yu, Shun-Zheng Verfasser aut
Hidden Semi-Markov models theory, algorithms and applications Shun-Zheng Yu
Amsterdam, Netherlands Elsevier [2016]
© 2016
1 online resource illustrations
txt rdacontent
c rdamedia
cr rdacarrier
Computer science reviews and trends
Includes bibliographical references
Hidden semi-Markov models (HSMMs) are among the most important models in the area of artificial intelligence / machine learning. Since the first HSMM was introduced in 1980 for machine recognition of speech, three other HSMMs have been proposed, with various definitions of duration and observation distributions. Those models have different expressions, algorithms, computational complexities, and applicable areas, without explicitly interchangeable forms. Hidden Semi-Markov Models: Theory, Algorithms and Applications provides a unified and foundational approach to HSMMs, including various HSMMs (such as the explicit duration, variable transition, and residential time of HSMMs), inference and estimation algorithms, implementation methods and application instances. Learn new developments and state-of-the-art emerging topics as they relate to HSMMs, presented with examples drawn from medicine, engineering and computer science
MATHEMATICS / Applied bisacsh
MATHEMATICS / Probability & Statistics / General bisacsh
Markov processes fast
Renewal theory fast
Markov processes
Renewal theory
Erscheint auch als Druck-Ausgabe 9780128027677
http://www.sciencedirect.com/science/book/9780128027677 Verlag URL des Erstveröffentlichers Volltext
spellingShingle Yu, Shun-Zheng
Hidden Semi-Markov models theory, algorithms and applications
MATHEMATICS / Applied bisacsh
MATHEMATICS / Probability & Statistics / General bisacsh
Markov processes fast
Renewal theory fast
Markov processes
Renewal theory
title Hidden Semi-Markov models theory, algorithms and applications
title_auth Hidden Semi-Markov models theory, algorithms and applications
title_exact_search Hidden Semi-Markov models theory, algorithms and applications
title_full Hidden Semi-Markov models theory, algorithms and applications Shun-Zheng Yu
title_fullStr Hidden Semi-Markov models theory, algorithms and applications Shun-Zheng Yu
title_full_unstemmed Hidden Semi-Markov models theory, algorithms and applications Shun-Zheng Yu
title_short Hidden Semi-Markov models
title_sort hidden semi markov models theory algorithms and applications
title_sub theory, algorithms and applications
topic MATHEMATICS / Applied bisacsh
MATHEMATICS / Probability & Statistics / General bisacsh
Markov processes fast
Renewal theory fast
Markov processes
Renewal theory
topic_facet MATHEMATICS / Applied
MATHEMATICS / Probability & Statistics / General
Markov processes
Renewal theory
url http://www.sciencedirect.com/science/book/9780128027677
work_keys_str_mv AT yushunzheng hiddensemimarkovmodelstheoryalgorithmsandapplications