Conformal prediction for reliable machine learning theory, adaptations, and applications

"Traditional, low-dimensional, small scale data have been successfully dealt with using conventional software engineering and classical statistical methods, such as discriminant analysis, neural networks, genetic algorithms and others. But the change of scale in data collection and the dimensio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Balasubramanian, Vineeth (HerausgeberIn), Ho, Shen-Shyang (HerausgeberIn), Vovk, Vladimir 1960- (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Amsterdam Boston Morgan Kaufmann © 2014
Schlagworte:
Online-Zugang:DE-860
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV046126570
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 190827s2014 xx o|||| 00||| eng d
020 |a 9780124017153  |9 978-0-12-401715-3 
020 |a 0124017150  |9 0-12-401715-0 
020 |a 1306697484  |9 1-306-69748-4 
020 |a 9781306697484  |9 978-1-306-69748-4 
035 |a (ZDB-33-ESD)ocn878922864 
035 |a (OCoLC)878922864 
035 |a (DE-599)BVBBV046126570 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
082 0 |a 006.3/1  |2 23 
084 |a ST 300  |0 (DE-625)143650:  |2 rvk 
245 1 0 |a Conformal prediction for reliable machine learning  |b theory, adaptations, and applications  |c [edited by] Vineeth Balasubramanian, Shen-Shyang Ho, Vladimir Vovk 
264 1 |a Amsterdam  |a Boston  |b Morgan Kaufmann  |c © 2014 
300 |a 1 online resource 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Includes bibliographical references and index 
520 |a "Traditional, low-dimensional, small scale data have been successfully dealt with using conventional software engineering and classical statistical methods, such as discriminant analysis, neural networks, genetic algorithms and others. But the change of scale in data collection and the dimensionality of modern data sets has profound implications on the type of analysis that can be done. Recently several kernel-based machine learning algorithms have been developed for dealing with high-dimensional problems, where a large number of features could cause a combinatorial explosion. These methods are quickly gaining popularity, and it is widely believed that they will help to meet the challenge of analysing very large data sets. Learning machines often perform well in a wide range of applications and have nice theoretical properties without requiring any parametric statistical assumption about the source of data (unlike traditional statistical techniques). However, a typical drawback of many machine learning algorithms is that they usually do not provide any useful measure of confidence in the predicted labels of new, unclassifed examples. Confidence estimation is a well-studied area of both parametric and non-parametric statistics; however, usually only low-dimensional problems are considered"-- 
650 7 |a COMPUTERS / General  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 4 |a Aprenentatge automàtic 
650 4 |a Machine learning 
700 1 |a Balasubramanian, Vineeth  |4 edt 
700 1 |a Ho, Shen-Shyang  |4 edt 
700 1 |a Vovk, Vladimir  |d 1960-  |4 edt 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 0123985374 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780123985378 
856 4 0 |u http://www.sciencedirect.com/science/book/9780123985378  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-33-ESD 
943 1 |a oai:aleph.bib-bvb.de:BVB01-031507024 
966 e |u http://www.sciencedirect.com/science/book/9780123985378  |l DE-860  |p ZDB-33-ESD  |q FLA_PDA_ESD  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819307085833175041
any_adam_object
author2 Balasubramanian, Vineeth
Ho, Shen-Shyang
Vovk, Vladimir 1960-
author2_role edt
edt
edt
author2_variant v b vb
s s h ssh
v v vv
author_facet Balasubramanian, Vineeth
Ho, Shen-Shyang
Vovk, Vladimir 1960-
building Verbundindex
bvnumber BV046126570
classification_rvk ST 300
collection ZDB-33-ESD
ctrlnum (ZDB-33-ESD)ocn878922864
(OCoLC)878922864
(DE-599)BVBBV046126570
dewey-full 006.3/1
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3/1
dewey-search 006.3/1
dewey-sort 16.3 11
dewey-tens 000 - Computer science, information, general works
discipline Informatik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03082nam a2200469zc 4500</leader><controlfield tag="001">BV046126570</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190827s2014 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780124017153</subfield><subfield code="9">978-0-12-401715-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0124017150</subfield><subfield code="9">0-12-401715-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1306697484</subfield><subfield code="9">1-306-69748-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781306697484</subfield><subfield code="9">978-1-306-69748-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-ESD)ocn878922864</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)878922864</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046126570</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conformal prediction for reliable machine learning</subfield><subfield code="b">theory, adaptations, and applications</subfield><subfield code="c">[edited by] Vineeth Balasubramanian, Shen-Shyang Ho, Vladimir Vovk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="a">Boston</subfield><subfield code="b">Morgan Kaufmann</subfield><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Traditional, low-dimensional, small scale data have been successfully dealt with using conventional software engineering and classical statistical methods, such as discriminant analysis, neural networks, genetic algorithms and others. But the change of scale in data collection and the dimensionality of modern data sets has profound implications on the type of analysis that can be done. Recently several kernel-based machine learning algorithms have been developed for dealing with high-dimensional problems, where a large number of features could cause a combinatorial explosion. These methods are quickly gaining popularity, and it is widely believed that they will help to meet the challenge of analysing very large data sets. Learning machines often perform well in a wide range of applications and have nice theoretical properties without requiring any parametric statistical assumption about the source of data (unlike traditional statistical techniques). However, a typical drawback of many machine learning algorithms is that they usually do not provide any useful measure of confidence in the predicted labels of new, unclassifed examples. Confidence estimation is a well-studied area of both parametric and non-parametric statistics; however, usually only low-dimensional problems are considered"--</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aprenentatge automàtic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balasubramanian, Vineeth</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ho, Shen-Shyang</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vovk, Vladimir</subfield><subfield code="d">1960-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0123985374</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780123985378</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780123985378</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031507024</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9780123985378</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="q">FLA_PDA_ESD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV046126570
illustrated Not Illustrated
indexdate 2024-12-24T07:47:19Z
institution BVB
isbn 9780124017153
0124017150
1306697484
9781306697484
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-031507024
oclc_num 878922864
open_access_boolean
physical 1 online resource
psigel ZDB-33-ESD
ZDB-33-ESD FLA_PDA_ESD
publishDate 2014
publishDateSearch 2014
publishDateSort 2014
publisher Morgan Kaufmann
record_format marc
spelling Conformal prediction for reliable machine learning theory, adaptations, and applications [edited by] Vineeth Balasubramanian, Shen-Shyang Ho, Vladimir Vovk
Amsterdam Boston Morgan Kaufmann © 2014
1 online resource
txt rdacontent
c rdamedia
cr rdacarrier
Includes bibliographical references and index
"Traditional, low-dimensional, small scale data have been successfully dealt with using conventional software engineering and classical statistical methods, such as discriminant analysis, neural networks, genetic algorithms and others. But the change of scale in data collection and the dimensionality of modern data sets has profound implications on the type of analysis that can be done. Recently several kernel-based machine learning algorithms have been developed for dealing with high-dimensional problems, where a large number of features could cause a combinatorial explosion. These methods are quickly gaining popularity, and it is widely believed that they will help to meet the challenge of analysing very large data sets. Learning machines often perform well in a wide range of applications and have nice theoretical properties without requiring any parametric statistical assumption about the source of data (unlike traditional statistical techniques). However, a typical drawback of many machine learning algorithms is that they usually do not provide any useful measure of confidence in the predicted labels of new, unclassifed examples. Confidence estimation is a well-studied area of both parametric and non-parametric statistics; however, usually only low-dimensional problems are considered"--
COMPUTERS / General bisacsh
Machine learning fast
Aprenentatge automàtic
Machine learning
Balasubramanian, Vineeth edt
Ho, Shen-Shyang edt
Vovk, Vladimir 1960- edt
Erscheint auch als Druck-Ausgabe 0123985374
Erscheint auch als Druck-Ausgabe 9780123985378
http://www.sciencedirect.com/science/book/9780123985378 Verlag URL des Erstveröffentlichers Volltext
spellingShingle Conformal prediction for reliable machine learning theory, adaptations, and applications
COMPUTERS / General bisacsh
Machine learning fast
Aprenentatge automàtic
Machine learning
title Conformal prediction for reliable machine learning theory, adaptations, and applications
title_auth Conformal prediction for reliable machine learning theory, adaptations, and applications
title_exact_search Conformal prediction for reliable machine learning theory, adaptations, and applications
title_full Conformal prediction for reliable machine learning theory, adaptations, and applications [edited by] Vineeth Balasubramanian, Shen-Shyang Ho, Vladimir Vovk
title_fullStr Conformal prediction for reliable machine learning theory, adaptations, and applications [edited by] Vineeth Balasubramanian, Shen-Shyang Ho, Vladimir Vovk
title_full_unstemmed Conformal prediction for reliable machine learning theory, adaptations, and applications [edited by] Vineeth Balasubramanian, Shen-Shyang Ho, Vladimir Vovk
title_short Conformal prediction for reliable machine learning
title_sort conformal prediction for reliable machine learning theory adaptations and applications
title_sub theory, adaptations, and applications
topic COMPUTERS / General bisacsh
Machine learning fast
Aprenentatge automàtic
Machine learning
topic_facet COMPUTERS / General
Machine learning
Aprenentatge automàtic
url http://www.sciencedirect.com/science/book/9780123985378
work_keys_str_mv AT balasubramanianvineeth conformalpredictionforreliablemachinelearningtheoryadaptationsandapplications
AT hoshenshyang conformalpredictionforreliablemachinelearningtheoryadaptationsandapplications
AT vovkvladimir conformalpredictionforreliablemachinelearningtheoryadaptationsandapplications