Principles of artificial neural networks basic designs to deep learning

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Graupe, Daniel (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Singapore ; Hackensack, NJ World Scientific Publishing Co. Pte. Ltd. [2019]
Ausgabe:4th edition
Schriftenreihe:Advanced series in circuits and systems 8
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV046093970
003 DE-604
005 20200312
007 t|
008 190807s2019 xx a||| b||| 00||| eng d
020 |a 9789811201226  |9 9789811201226 
020 |a 9811201226  |9 9811201226 
035 |a (OCoLC)1124793440 
035 |a (DE-599)BVBBV046093970 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-739  |a DE-83  |a DE-898 
084 |a ST 301  |0 (DE-625)143651:  |2 rvk 
084 |a 68T05  |2 msc 
100 1 |a Graupe, Daniel  |0 (DE-588)1129263053  |4 aut 
245 1 0 |a Principles of artificial neural networks  |b basic designs to deep learning  |c Daniel Graupe 
250 |a 4th edition 
264 1 |a Singapore ; Hackensack, NJ  |b World Scientific Publishing Co. Pte. Ltd.  |c [2019] 
264 4 |c © 2019 
300 |a xvi, 422 Seiten  |b Illustrationen, Diagramme  |c 25 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Advanced series in circuits and systems  |v 8 
505 8 |a Introduction and role of artificial neural networks -- Fundamentals of biological neural networks -- Basic principles of ANNs and their structures -- The perceptron -- The madaline -- Back propagation -- Hopfield networks -- Counter propagation -- Adaptive resonance theory -- The cognitron and neocognition -- Statistical training -- Recurrent (time cycling) back propagation networks -- Deep learning neural networks : principles and scope -- Deep learning convolutional neural network -- LAMSTAR neural networks -- Performance of DLNN : comparative case studies 
650 0 7 |a Neuronales Netz  |0 (DE-588)4226127-2  |2 gnd  |9 rswk-swf 
653 0 |a Neural networks (Computer science) 
653 0 |a Neural networks (Computer science) 
689 0 0 |a Neuronales Netz  |0 (DE-588)4226127-2  |D s 
689 0 |5 DE-604 
830 0 |a Advanced series in circuits and systems  |v 8  |w (DE-604)BV016934728  |9 8 
856 4 2 |m Digitalisierung UB Passau - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031474884&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-031474884 

Datensatz im Suchindex

_version_ 1819784691731922944
adam_text Contents Acknowledgments vii Preface to the Fourth Edition ix Preface to the First Edition xi Chapter 1. Introduction and Role of Artificial NeuralNetworks 1 Chapter 2. Fundamentals of Biological Neural Networks 5 Chapter 3. Basic Principles of ANNs and Their Structures 3.1. 3.2. 3.3. 3.4. Chapter 4. Chapter 5. Chapter 6. Basic Principles of ANN Design.......................................... Basic Neural Structures...................................................... The Perceptron’s Input-Output Principles........................ The Adaline (ALC) ........................................................... 9 9 10 12 13 The Perceptron 17 4.1. The Basic Structure........................................................... 4.2. The Single-Layer Representation Problem........................ 4.3. The Limitations of the Single-Layer Perceptron............... 4.4. Many-Layer Perceptrons..................................................... 4.A. Perceptron Case Study: Identifying Autoregressive Parameters of a Signal (AR Time Series Identification) . . 17 22 22 24 25 The Madaline 37 5.1. Madaline Training.............................................................. 5.A. Madaline Case Study: Character Recognition................. 37 39 Back Propagation 59 6.1. 6.2. 59 59 The Back Propagation Learning Procedure..................... Derivation of the BP Algorithm.......................................... xiii xiv Principles of Artificial and Neural Networks 6.3. Modified BP Algorithms..................................................... 63 6.A. Back Propagation Case Study: Character Recognition . . 65 6.B. Back Propagation Case Study: The Exclusive-OR (XOR) Problem (2-Layer BP)......................................................... 76 6.C. Back Propagation Case Study: The XOR Problem — 3 Layer BP Network............................................................ 94 6.D. Average Monthly High and Low Temperature Prediction Using Backpropagation Neural Networks..............................112 Chapter 7. Hopfield Networks 123 7.1. 7.2. 7.3. Introduction..............................................................................123 Binary Hopfield Networks......................................................123 Setting of Weights in Hopfield Nets — Bidirectional Associative Memory (BAM) Principle.................................125 7.4. Walsh Functions.....................................................................127 7.5. Network Stability.................................................................... 129 7.6. Summary of the Procedure for Implementing the Hopfield Network.....................................................................131 7.7. Continuous Hopfield Models...................................................132 7.8. The Continuous Energy (Lyapunov) Function..................... 133 7.A. Hopfield Network Case Study: Character Recognition . . 135 7.B. Hopfield Network Case Study: Traveling Salesman Problem................................................................................... 147 7.C. Cell Shape Detection Using Neural Networks.................... 170 Chapter 8. Counter Propagation 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.A. Introduction..............................................................................185 Kohonen Self-Organizing Map (SOM) Layer........................186 Grossberg Layer .....................................................................186 Training of the Kohonen Layer.............................................187 Training of Grossberg Layers................................................189 The Combined Counter Propagation Network..................... 190 Counter Propagation Network Case Study: Character Recognition............................................................................. 190 Chapter 9. Adaptive Resonance Theory 9.1. 9.2. 9.3. 9.4. 9.5. 185 203 Motivation ............................................................................. 203 The ART Network Structure................................................203 Setting-Up of the ART Network ..........................................207 Network Operation..................................................................208 Properties of ART..................................................................209 Contents XV 9.6. Discussion and General Comments on ART-I and ART-II ................................................................................... 211 9.A. ART-I Network Case Study: Character Recognition ... 211 9.B. ART-I Case Study: Speech Recognition.............................225 Chapter 10. The Cognitron and Neocognitron 10.1. 10.2. 10.3. 10.4. 10.5. Introduction............................................................................. 233 The Basic Principles of the Cognitron.................................233 Network Operation................................................................. 234 Cognitron’s Network Training............................................... 235 The Neocognitron ................................................................. 237 Chapter 11. Statistical Training 11.1. 11.2. 11.3. 11.4. 11.5. 11.6. 11.A. 11.B. 255 Recurrent/Discrete Time Networks...................................... 255 Fully Recurrent Networks..................................................... 256 Continuously Recurrent Back Propagation Networks . . . 258 Recurrent Back Propagation Case Study: Character Recognition............................................................................. 258 Chapter 13. Deep Learning Neural Networks: Principles and Scope 13.1. 13.2. 13.3. 13.4. 239 Fundamental Philosophy........................................................ 239 Annealing Methods................................................................. 240 Simulated Annealing by Boltzmann Training of Weights . 240 Stochastic Determination of Magnitude of Weight Change................................................................................... 241 Temperature-Equivalent Setting...................................... . 241 Cauchy Training of Neural Network ....................................242 Statistical Training Case Study: A Stochastic Hopfield Network for Character Recognition...................................... 243 Statistical Training Case Study: Identifying AR Signal Parameters with a Stochastic Perceptron Model..................246 Chapter 12. Recurrent (Time Cycling) Back Propagation Networks 12.1. 12.2. 12.3. 12.A. 233 271 Definition................................................................................ 271 Brief History of DNN and of Its Applications.....................272 The Scope of DLNN.............................................................. 274 Introduction to Specific DLNN Algorithms ........................274 Chapter 14. Deep Learning Convolutional Neural Network 279 14.1. Introduction............................................................................. 279 14.2. Feed-Forward Loop................................................................. 280 14.3. The Convolution Layer........................................................... 283 xvi Principles of Artificial and Neural Networks 14.4. Back Propagation .................................................................... 286 14.5. ReLu Layers ............................................................................. 286 14.6. Pooling Layers.......................................................................... 287 14.7. Dropout.......................................................................................288 14.8. Output FC Layer....................................................................... 289 14.9. Parameter (Weight) Sharing.....................................................289 14.10. Applications................................................................................ 290 Chapter 15. LAMSTAR Neural Networks 15.1. 15.2. 15.3. 15.4. 15.5. 293 LAMSTAR Principles..............................................................293 LAMSTAR-1 (LNN-1)..............................................................305 LAMSTAR-2 (LNN-2)..............................................................305 Data Analysis LAMSTAR........................................................311 Comments and Applications.....................................................315 Chapter 16. Performance of DLNN— Comparative Case Studies 319 16.1. Case Studies ............................................................................. 319 16.2. Comparative Tabulation of Performance and Computational Speed ..............................................................344 Problems 395 References 401 Author Index 415 Subject Index 419
any_adam_object 1
author Graupe, Daniel
author_GND (DE-588)1129263053
author_facet Graupe, Daniel
author_role aut
author_sort Graupe, Daniel
author_variant d g dg
building Verbundindex
bvnumber BV046093970
classification_rvk ST 301
contents Introduction and role of artificial neural networks -- Fundamentals of biological neural networks -- Basic principles of ANNs and their structures -- The perceptron -- The madaline -- Back propagation -- Hopfield networks -- Counter propagation -- Adaptive resonance theory -- The cognitron and neocognition -- Statistical training -- Recurrent (time cycling) back propagation networks -- Deep learning neural networks : principles and scope -- Deep learning convolutional neural network -- LAMSTAR neural networks -- Performance of DLNN : comparative case studies
ctrlnum (OCoLC)1124793440
(DE-599)BVBBV046093970
discipline Informatik
edition 4th edition
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02251nam a2200421 cb4500</leader><controlfield tag="001">BV046093970</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200312 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">190807s2019 xx a||| b||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811201226</subfield><subfield code="9">9789811201226</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9811201226</subfield><subfield code="9">9811201226</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1124793440</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046093970</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">68T05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Graupe, Daniel</subfield><subfield code="0">(DE-588)1129263053</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of artificial neural networks</subfield><subfield code="b">basic designs to deep learning</subfield><subfield code="c">Daniel Graupe</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4th edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore ; Hackensack, NJ</subfield><subfield code="b">World Scientific Publishing Co. Pte. Ltd.</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 422 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced series in circuits and systems</subfield><subfield code="v">8</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction and role of artificial neural networks -- Fundamentals of biological neural networks -- Basic principles of ANNs and their structures -- The perceptron -- The madaline -- Back propagation -- Hopfield networks -- Counter propagation -- Adaptive resonance theory -- The cognitron and neocognition -- Statistical training -- Recurrent (time cycling) back propagation networks -- Deep learning neural networks : principles and scope -- Deep learning convolutional neural network -- LAMSTAR neural networks -- Performance of DLNN : comparative case studies</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced series in circuits and systems</subfield><subfield code="v">8</subfield><subfield code="w">(DE-604)BV016934728</subfield><subfield code="9">8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=031474884&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031474884</subfield></datafield></record></collection>
id DE-604.BV046093970
illustrated Illustrated
indexdate 2024-12-24T07:46:27Z
institution BVB
isbn 9789811201226
9811201226
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-031474884
oclc_num 1124793440
open_access_boolean
owner DE-739
DE-83
DE-898
DE-BY-UBR
owner_facet DE-739
DE-83
DE-898
DE-BY-UBR
physical xvi, 422 Seiten Illustrationen, Diagramme 25 cm
publishDate 2019
publishDateSearch 2019
publishDateSort 2019
publisher World Scientific Publishing Co. Pte. Ltd.
record_format marc
series Advanced series in circuits and systems
series2 Advanced series in circuits and systems
spellingShingle Graupe, Daniel
Principles of artificial neural networks basic designs to deep learning
Advanced series in circuits and systems
Introduction and role of artificial neural networks -- Fundamentals of biological neural networks -- Basic principles of ANNs and their structures -- The perceptron -- The madaline -- Back propagation -- Hopfield networks -- Counter propagation -- Adaptive resonance theory -- The cognitron and neocognition -- Statistical training -- Recurrent (time cycling) back propagation networks -- Deep learning neural networks : principles and scope -- Deep learning convolutional neural network -- LAMSTAR neural networks -- Performance of DLNN : comparative case studies
Neuronales Netz (DE-588)4226127-2 gnd
subject_GND (DE-588)4226127-2
title Principles of artificial neural networks basic designs to deep learning
title_auth Principles of artificial neural networks basic designs to deep learning
title_exact_search Principles of artificial neural networks basic designs to deep learning
title_full Principles of artificial neural networks basic designs to deep learning Daniel Graupe
title_fullStr Principles of artificial neural networks basic designs to deep learning Daniel Graupe
title_full_unstemmed Principles of artificial neural networks basic designs to deep learning Daniel Graupe
title_short Principles of artificial neural networks
title_sort principles of artificial neural networks basic designs to deep learning
title_sub basic designs to deep learning
topic Neuronales Netz (DE-588)4226127-2 gnd
topic_facet Neuronales Netz
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031474884&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV016934728
work_keys_str_mv AT graupedaniel principlesofartificialneuralnetworksbasicdesignstodeeplearning