How to prove it a structured approach

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Velleman, Daniel J. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2019
Ausgabe:Third edition
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV046065478
003 DE-604
005 20240701
007 t|
008 190725s2019 xx a||| |||| 00||| eng d
020 |a 9781108439534  |c Pb.: £ 29.99  |9 978-1-108-43953-4 
020 |a 9781108424189  |c Hb.: £ 79.99  |9 978-1-108-42418-9 
035 |a (ELiSA)ELiSA-9781108424189 
035 |a (OCoLC)1113464402 
035 |a (DE-599)HBZHT020125291 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-634  |a DE-706  |a DE-20  |a DE-384  |a DE-355 
084 |a SK 130  |0 (DE-625)143216:  |2 rvk 
100 1 |a Velleman, Daniel J.  |e Verfasser  |0 (DE-588)1065412517  |4 aut 
245 1 0 |a How to prove it  |b a structured approach  |c Daniel J. Velleman 
250 |a Third edition 
264 1 |a Cambridge  |b Cambridge University Press  |c 2019 
300 |a xii, 458 Seiten  |b Illustrationen, Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Hier auch später erschienene, unveränderte Nachdrucke 
650 0 7 |a Mathematik  |0 (DE-588)4037944-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematische Logik  |0 (DE-588)4037951-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Beweis  |0 (DE-588)4132532-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Mengenlehre  |0 (DE-588)4074715-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Beweistheorie  |0 (DE-588)4145177-6  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4151278-9  |a Einführung  |2 gnd-content 
689 0 0 |a Beweis  |0 (DE-588)4132532-1  |D s 
689 0 1 |a Mathematik  |0 (DE-588)4037944-9  |D s 
689 0 |5 DE-604 
689 1 0 |a Beweistheorie  |0 (DE-588)4145177-6  |D s 
689 1 |8 1\p  |5 DE-604 
689 2 0 |a Mengenlehre  |0 (DE-588)4074715-3  |D s 
689 2 |8 2\p  |5 DE-604 
689 3 0 |a Mathematische Logik  |0 (DE-588)4037951-6  |D s 
689 3 |8 3\p  |5 DE-604 
856 4 2 |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031446745&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-031446745 

Datensatz im Suchindex

DE-BY-UBR_call_number 1408/SK 130 V439(3)
DE-BY-UBR_katkey 6992038
DE-BY-UBR_media_number TEMP12784808
_version_ 1822753307593015296
any_adam_object 1
author Velleman, Daniel J.
author_GND (DE-588)1065412517
author_facet Velleman, Daniel J.
author_role aut
author_sort Velleman, Daniel J.
author_variant d j v dj djv
building Verbundindex
bvnumber BV046065478
classification_rvk SK 130
ctrlnum (ELiSA)ELiSA-9781108424189
(OCoLC)1113464402
(DE-599)HBZHT020125291
discipline Mathematik
edition Third edition
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02351nam a2200541 c 4500</leader><controlfield tag="001">BV046065478</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240701 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">190725s2019 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108439534</subfield><subfield code="c">Pb.: £ 29.99</subfield><subfield code="9">978-1-108-43953-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108424189</subfield><subfield code="c">Hb.: £ 79.99</subfield><subfield code="9">978-1-108-42418-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELiSA)ELiSA-9781108424189</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1113464402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT020125291</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Velleman, Daniel J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1065412517</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">How to prove it</subfield><subfield code="b">a structured approach</subfield><subfield code="c">Daniel J. Velleman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 458 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweistheorie</subfield><subfield code="0">(DE-588)4145177-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Beweistheorie</subfield><subfield code="0">(DE-588)4145177-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=031446745&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031446745</subfield></datafield></record></collection>
genre (DE-588)4151278-9 Einführung gnd-content
genre_facet Einführung
id DE-604.BV046065478
illustrated Illustrated
indexdate 2024-12-24T07:45:34Z
institution BVB
isbn 9781108439534
9781108424189
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-031446745
oclc_num 1113464402
open_access_boolean
owner DE-634
DE-706
DE-20
DE-384
DE-355
DE-BY-UBR
owner_facet DE-634
DE-706
DE-20
DE-384
DE-355
DE-BY-UBR
physical xii, 458 Seiten Illustrationen, Diagramme
publishDate 2019
publishDateSearch 2019
publishDateSort 2019
publisher Cambridge University Press
record_format marc
spellingShingle Velleman, Daniel J.
How to prove it a structured approach
Mathematik (DE-588)4037944-9 gnd
Mathematische Logik (DE-588)4037951-6 gnd
Beweis (DE-588)4132532-1 gnd
Mengenlehre (DE-588)4074715-3 gnd
Beweistheorie (DE-588)4145177-6 gnd
subject_GND (DE-588)4037944-9
(DE-588)4037951-6
(DE-588)4132532-1
(DE-588)4074715-3
(DE-588)4145177-6
(DE-588)4151278-9
title How to prove it a structured approach
title_auth How to prove it a structured approach
title_exact_search How to prove it a structured approach
title_full How to prove it a structured approach Daniel J. Velleman
title_fullStr How to prove it a structured approach Daniel J. Velleman
title_full_unstemmed How to prove it a structured approach Daniel J. Velleman
title_short How to prove it
title_sort how to prove it a structured approach
title_sub a structured approach
topic Mathematik (DE-588)4037944-9 gnd
Mathematische Logik (DE-588)4037951-6 gnd
Beweis (DE-588)4132532-1 gnd
Mengenlehre (DE-588)4074715-3 gnd
Beweistheorie (DE-588)4145177-6 gnd
topic_facet Mathematik
Mathematische Logik
Beweis
Mengenlehre
Beweistheorie
Einführung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031446745&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT vellemandanielj howtoproveitastructuredapproach