Artificial intelligence and conservation

With the increasing public interest in artificial intelligence (AI), there is also increasing interest in learning about the benefits that AI can deliver to society. This book focuses on research advances in AI that benefit the conservation of wildlife, forests, coral reefs, rivers, and other natura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Fang, Fei 1989- (HerausgeberIn), Tambe, Milind (HerausgeberIn), Dilkina, Bistra (HerausgeberIn), Plumptre, Andrew J. (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge, United Kingdom ; New York, NY Cambridge University Press 2019
Schlagworte:
Online-Zugang:BSB01
FHN01
UER01
UPA01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a22000008c 4500
001 BV045920891
003 DE-604
005 20220906
007 cr|uuu---uuuuu
008 190607s2019 |||| o||u| ||||||eng d
020 |a 9781108587792  |c Online, PDF  |9 978-1-10858779-2 
024 7 |a 10.1017/9781108587792  |2 doi 
035 |a (ZDB-20-CBO)CR9781108587792 
035 |a (OCoLC)1104881731 
035 |a (DE-599)BVBBV045920891 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-29  |a DE-739  |a DE-92 
084 |a ST 300  |0 (DE-625)143650:  |2 rvk 
245 1 0 |a Artificial intelligence and conservation  |c edited by Fei Fang, Carnegie Mellon University, Milind Tambe, University of Southern California, Bistra Dilkina, Georgia Institute of Technology, Andrew J. Plumptre, Key Biodiversity Areas Secretariat 
264 1 |a Cambridge, United Kingdom ; New York, NY  |b Cambridge University Press  |c 2019 
300 |a 1 Online-Ressource 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
505 8 |a Law enforcement for wildlife conservation -- Wildlife poaching forecasting based on ranger-collected data and evaluation through field tests -- Optimal patrol planning against black-box attackers -- Automatic detection of poachers and wildlife with UAVs -- Protecting coral reef ecosystems via efficient patrols -- Simultaneous optimization of strategic and tactical planning for environmental sustainability and security -- NECTAR: enforcing environmental compliance through strategically randomized factory inspections -- Connecting conservation research and implementation: building a wildfire assistant -- Probablistic inference with generating functions for animal populations -- Engaging citizen scientists in data collection for conservation -- Simulator-defined markov decision processes: a case study in managing bio-invasions 
520 3 |a With the increasing public interest in artificial intelligence (AI), there is also increasing interest in learning about the benefits that AI can deliver to society. This book focuses on research advances in AI that benefit the conservation of wildlife, forests, coral reefs, rivers, and other natural resources. It presents how the joint efforts of researchers in computer science, ecology, economics, and psychology help address the goals of the United Nations' 2030 Agenda for Sustainable Development. Written at a level accessible to conservation professionals and AI researchers, the book offers both an overview of the field and an in-depth view of how AI is being used to understand patterns in wildlife poaching and enhance patrol efforts in response, covering research advances, field tests and real-world deployments. The book also features efforts in other major conservation directions, including protecting natural resources, ecosystem monitoring, and bio-invasion management through the use of game theory, machine learning, and optimization 
650 0 7 |a Künstliche Intelligenz  |0 (DE-588)4033447-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Artenschutz  |0 (DE-588)4112598-8  |2 gnd  |9 rswk-swf 
653 0 |a Wildlife conservation / Technological innovations 
653 0 |a Artificial intelligence 
653 0 |a Artificial intelligence 
655 7 |0 (DE-588)4143413-4  |a Aufsatzsammlung  |2 gnd-content 
689 0 0 |a Künstliche Intelligenz  |0 (DE-588)4033447-8  |D s 
689 0 1 |a Artenschutz  |0 (DE-588)4112598-8  |D s 
689 0 |5 DE-604 
700 1 |a Fang, Fei  |d 1989-  |0 (DE-588)1186842245  |4 edt 
700 1 |a Tambe, Milind  |0 (DE-588)1161469362  |4 edt 
700 1 |a Dilkina, Bistra  |4 edt 
700 1 |a Plumptre, Andrew J.  |4 edt 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe, Paperback  |z 978-1-10846473-4 
856 4 0 |u https://doi.org/10.1017/9781108587792  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
999 |a oai:aleph.bib-bvb.de:BVB01-031303386 
966 e |u https://doi.org/10.1017/9781108587792  |l BSB01  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781108587792  |l FHN01  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781108587792  |l UER01  |p ZDB-20-CBO  |q UER_PDA_CBO_Kauf  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781108587792  |l UPA01  |p ZDB-20-CBO  |q UPA_PDA_CBO_Kauf2019  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1804180099211198464
any_adam_object
author2 Fang, Fei 1989-
Tambe, Milind
Dilkina, Bistra
Plumptre, Andrew J.
author2_role edt
edt
edt
edt
author2_variant f f ff
m t mt
b d bd
a j p aj ajp
author_GND (DE-588)1186842245
(DE-588)1161469362
author_facet Fang, Fei 1989-
Tambe, Milind
Dilkina, Bistra
Plumptre, Andrew J.
building Verbundindex
bvnumber BV045920891
classification_rvk ST 300
collection ZDB-20-CBO
contents Law enforcement for wildlife conservation -- Wildlife poaching forecasting based on ranger-collected data and evaluation through field tests -- Optimal patrol planning against black-box attackers -- Automatic detection of poachers and wildlife with UAVs -- Protecting coral reef ecosystems via efficient patrols -- Simultaneous optimization of strategic and tactical planning for environmental sustainability and security -- NECTAR: enforcing environmental compliance through strategically randomized factory inspections -- Connecting conservation research and implementation: building a wildfire assistant -- Probablistic inference with generating functions for animal populations -- Engaging citizen scientists in data collection for conservation -- Simulator-defined markov decision processes: a case study in managing bio-invasions
ctrlnum (ZDB-20-CBO)CR9781108587792
(OCoLC)1104881731
(DE-599)BVBBV045920891
discipline Informatik
doi_str_mv 10.1017/9781108587792
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04305nmm a22005418c 4500</leader><controlfield tag="001">BV045920891</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220906 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190607s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108587792</subfield><subfield code="c">Online, PDF</subfield><subfield code="9">978-1-10858779-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108587792</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108587792</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1104881731</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045920891</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial intelligence and conservation</subfield><subfield code="c">edited by Fei Fang, Carnegie Mellon University, Milind Tambe, University of Southern California, Bistra Dilkina, Georgia Institute of Technology, Andrew J. Plumptre, Key Biodiversity Areas Secretariat</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Law enforcement for wildlife conservation -- Wildlife poaching forecasting based on ranger-collected data and evaluation through field tests -- Optimal patrol planning against black-box attackers -- Automatic detection of poachers and wildlife with UAVs -- Protecting coral reef ecosystems via efficient patrols -- Simultaneous optimization of strategic and tactical planning for environmental sustainability and security -- NECTAR: enforcing environmental compliance through strategically randomized factory inspections -- Connecting conservation research and implementation: building a wildfire assistant -- Probablistic inference with generating functions for animal populations -- Engaging citizen scientists in data collection for conservation -- Simulator-defined markov decision processes: a case study in managing bio-invasions</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">With the increasing public interest in artificial intelligence (AI), there is also increasing interest in learning about the benefits that AI can deliver to society. This book focuses on research advances in AI that benefit the conservation of wildlife, forests, coral reefs, rivers, and other natural resources. It presents how the joint efforts of researchers in computer science, ecology, economics, and psychology help address the goals of the United Nations' 2030 Agenda for Sustainable Development. Written at a level accessible to conservation professionals and AI researchers, the book offers both an overview of the field and an in-depth view of how AI is being used to understand patterns in wildlife poaching and enhance patrol efforts in response, covering research advances, field tests and real-world deployments. The book also features efforts in other major conservation directions, including protecting natural resources, ecosystem monitoring, and bio-invasion management through the use of game theory, machine learning, and optimization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Artenschutz</subfield><subfield code="0">(DE-588)4112598-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Wildlife conservation / Technological innovations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Artenschutz</subfield><subfield code="0">(DE-588)4112598-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Fei</subfield><subfield code="d">1989-</subfield><subfield code="0">(DE-588)1186842245</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tambe, Milind</subfield><subfield code="0">(DE-588)1161469362</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dilkina, Bistra</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Plumptre, Andrew J.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-10846473-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108587792</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031303386</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108587792</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108587792</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108587792</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UER_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108587792</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UPA_PDA_CBO_Kauf2019</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
genre (DE-588)4143413-4 Aufsatzsammlung gnd-content
genre_facet Aufsatzsammlung
id DE-604.BV045920891
illustrated Not Illustrated
indexdate 2024-07-10T08:30:22Z
institution BVB
isbn 9781108587792
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-031303386
oclc_num 1104881731
open_access_boolean
owner DE-12
DE-29
DE-739
DE-92
owner_facet DE-12
DE-29
DE-739
DE-92
physical 1 Online-Ressource
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
ZDB-20-CBO UER_PDA_CBO_Kauf
ZDB-20-CBO UPA_PDA_CBO_Kauf2019
publishDate 2019
publishDateSearch 2019
publishDateSort 2019
publisher Cambridge University Press
record_format marc
spelling Artificial intelligence and conservation edited by Fei Fang, Carnegie Mellon University, Milind Tambe, University of Southern California, Bistra Dilkina, Georgia Institute of Technology, Andrew J. Plumptre, Key Biodiversity Areas Secretariat
Cambridge, United Kingdom ; New York, NY Cambridge University Press 2019
1 Online-Ressource
txt rdacontent
c rdamedia
cr rdacarrier
Law enforcement for wildlife conservation -- Wildlife poaching forecasting based on ranger-collected data and evaluation through field tests -- Optimal patrol planning against black-box attackers -- Automatic detection of poachers and wildlife with UAVs -- Protecting coral reef ecosystems via efficient patrols -- Simultaneous optimization of strategic and tactical planning for environmental sustainability and security -- NECTAR: enforcing environmental compliance through strategically randomized factory inspections -- Connecting conservation research and implementation: building a wildfire assistant -- Probablistic inference with generating functions for animal populations -- Engaging citizen scientists in data collection for conservation -- Simulator-defined markov decision processes: a case study in managing bio-invasions
With the increasing public interest in artificial intelligence (AI), there is also increasing interest in learning about the benefits that AI can deliver to society. This book focuses on research advances in AI that benefit the conservation of wildlife, forests, coral reefs, rivers, and other natural resources. It presents how the joint efforts of researchers in computer science, ecology, economics, and psychology help address the goals of the United Nations' 2030 Agenda for Sustainable Development. Written at a level accessible to conservation professionals and AI researchers, the book offers both an overview of the field and an in-depth view of how AI is being used to understand patterns in wildlife poaching and enhance patrol efforts in response, covering research advances, field tests and real-world deployments. The book also features efforts in other major conservation directions, including protecting natural resources, ecosystem monitoring, and bio-invasion management through the use of game theory, machine learning, and optimization
Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf
Artenschutz (DE-588)4112598-8 gnd rswk-swf
Wildlife conservation / Technological innovations
Artificial intelligence
(DE-588)4143413-4 Aufsatzsammlung gnd-content
Künstliche Intelligenz (DE-588)4033447-8 s
Artenschutz (DE-588)4112598-8 s
DE-604
Fang, Fei 1989- (DE-588)1186842245 edt
Tambe, Milind (DE-588)1161469362 edt
Dilkina, Bistra edt
Plumptre, Andrew J. edt
Erscheint auch als Druck-Ausgabe, Paperback 978-1-10846473-4
https://doi.org/10.1017/9781108587792 Verlag URL des Erstveröffentlichers Volltext
spellingShingle Artificial intelligence and conservation
Law enforcement for wildlife conservation -- Wildlife poaching forecasting based on ranger-collected data and evaluation through field tests -- Optimal patrol planning against black-box attackers -- Automatic detection of poachers and wildlife with UAVs -- Protecting coral reef ecosystems via efficient patrols -- Simultaneous optimization of strategic and tactical planning for environmental sustainability and security -- NECTAR: enforcing environmental compliance through strategically randomized factory inspections -- Connecting conservation research and implementation: building a wildfire assistant -- Probablistic inference with generating functions for animal populations -- Engaging citizen scientists in data collection for conservation -- Simulator-defined markov decision processes: a case study in managing bio-invasions
Künstliche Intelligenz (DE-588)4033447-8 gnd
Artenschutz (DE-588)4112598-8 gnd
subject_GND (DE-588)4033447-8
(DE-588)4112598-8
(DE-588)4143413-4
title Artificial intelligence and conservation
title_auth Artificial intelligence and conservation
title_exact_search Artificial intelligence and conservation
title_full Artificial intelligence and conservation edited by Fei Fang, Carnegie Mellon University, Milind Tambe, University of Southern California, Bistra Dilkina, Georgia Institute of Technology, Andrew J. Plumptre, Key Biodiversity Areas Secretariat
title_fullStr Artificial intelligence and conservation edited by Fei Fang, Carnegie Mellon University, Milind Tambe, University of Southern California, Bistra Dilkina, Georgia Institute of Technology, Andrew J. Plumptre, Key Biodiversity Areas Secretariat
title_full_unstemmed Artificial intelligence and conservation edited by Fei Fang, Carnegie Mellon University, Milind Tambe, University of Southern California, Bistra Dilkina, Georgia Institute of Technology, Andrew J. Plumptre, Key Biodiversity Areas Secretariat
title_short Artificial intelligence and conservation
title_sort artificial intelligence and conservation
topic Künstliche Intelligenz (DE-588)4033447-8 gnd
Artenschutz (DE-588)4112598-8 gnd
topic_facet Künstliche Intelligenz
Artenschutz
Aufsatzsammlung
url https://doi.org/10.1017/9781108587792
work_keys_str_mv AT fangfei artificialintelligenceandconservation
AT tambemilind artificialintelligenceandconservation
AT dilkinabistra artificialintelligenceandconservation
AT plumptreandrewj artificialintelligenceandconservation