Artificial intelligence and conservation
With the increasing public interest in artificial intelligence (AI), there is also increasing interest in learning about the benefits that AI can deliver to society. This book focuses on research advances in AI that benefit the conservation of wildlife, forests, coral reefs, rivers, and other natura...
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY
Cambridge University Press
2019
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UER01 UPA01 URL des Erstveröffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a22000008c 4500 | ||
---|---|---|---|
001 | BV045920891 | ||
003 | DE-604 | ||
005 | 20220906 | ||
007 | cr|uuu---uuuuu | ||
008 | 190607s2019 |||| o||u| ||||||eng d | ||
020 | |a 9781108587792 |c Online, PDF |9 978-1-10858779-2 | ||
024 | 7 | |a 10.1017/9781108587792 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108587792 | ||
035 | |a (OCoLC)1104881731 | ||
035 | |a (DE-599)BVBBV045920891 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-29 |a DE-739 |a DE-92 | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
245 | 1 | 0 | |a Artificial intelligence and conservation |c edited by Fei Fang, Carnegie Mellon University, Milind Tambe, University of Southern California, Bistra Dilkina, Georgia Institute of Technology, Andrew J. Plumptre, Key Biodiversity Areas Secretariat |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY |b Cambridge University Press |c 2019 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Law enforcement for wildlife conservation -- Wildlife poaching forecasting based on ranger-collected data and evaluation through field tests -- Optimal patrol planning against black-box attackers -- Automatic detection of poachers and wildlife with UAVs -- Protecting coral reef ecosystems via efficient patrols -- Simultaneous optimization of strategic and tactical planning for environmental sustainability and security -- NECTAR: enforcing environmental compliance through strategically randomized factory inspections -- Connecting conservation research and implementation: building a wildfire assistant -- Probablistic inference with generating functions for animal populations -- Engaging citizen scientists in data collection for conservation -- Simulator-defined markov decision processes: a case study in managing bio-invasions | |
520 | 3 | |a With the increasing public interest in artificial intelligence (AI), there is also increasing interest in learning about the benefits that AI can deliver to society. This book focuses on research advances in AI that benefit the conservation of wildlife, forests, coral reefs, rivers, and other natural resources. It presents how the joint efforts of researchers in computer science, ecology, economics, and psychology help address the goals of the United Nations' 2030 Agenda for Sustainable Development. Written at a level accessible to conservation professionals and AI researchers, the book offers both an overview of the field and an in-depth view of how AI is being used to understand patterns in wildlife poaching and enhance patrol efforts in response, covering research advances, field tests and real-world deployments. The book also features efforts in other major conservation directions, including protecting natural resources, ecosystem monitoring, and bio-invasion management through the use of game theory, machine learning, and optimization | |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Artenschutz |0 (DE-588)4112598-8 |2 gnd |9 rswk-swf |
653 | 0 | |a Wildlife conservation / Technological innovations | |
653 | 0 | |a Artificial intelligence | |
653 | 0 | |a Artificial intelligence | |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 1 | |a Artenschutz |0 (DE-588)4112598-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Fang, Fei |d 1989- |0 (DE-588)1186842245 |4 edt | |
700 | 1 | |a Tambe, Milind |0 (DE-588)1161469362 |4 edt | |
700 | 1 | |a Dilkina, Bistra |4 edt | |
700 | 1 | |a Plumptre, Andrew J. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-1-10846473-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108587792 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031303386 | ||
966 | e | |u https://doi.org/10.1017/9781108587792 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108587792 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108587792 |l UER01 |p ZDB-20-CBO |q UER_PDA_CBO_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108587792 |l UPA01 |p ZDB-20-CBO |q UPA_PDA_CBO_Kauf2019 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180099211198464 |
---|---|
any_adam_object | |
author2 | Fang, Fei 1989- Tambe, Milind Dilkina, Bistra Plumptre, Andrew J. |
author2_role | edt edt edt edt |
author2_variant | f f ff m t mt b d bd a j p aj ajp |
author_GND | (DE-588)1186842245 (DE-588)1161469362 |
author_facet | Fang, Fei 1989- Tambe, Milind Dilkina, Bistra Plumptre, Andrew J. |
building | Verbundindex |
bvnumber | BV045920891 |
classification_rvk | ST 300 |
collection | ZDB-20-CBO |
contents | Law enforcement for wildlife conservation -- Wildlife poaching forecasting based on ranger-collected data and evaluation through field tests -- Optimal patrol planning against black-box attackers -- Automatic detection of poachers and wildlife with UAVs -- Protecting coral reef ecosystems via efficient patrols -- Simultaneous optimization of strategic and tactical planning for environmental sustainability and security -- NECTAR: enforcing environmental compliance through strategically randomized factory inspections -- Connecting conservation research and implementation: building a wildfire assistant -- Probablistic inference with generating functions for animal populations -- Engaging citizen scientists in data collection for conservation -- Simulator-defined markov decision processes: a case study in managing bio-invasions |
ctrlnum | (ZDB-20-CBO)CR9781108587792 (OCoLC)1104881731 (DE-599)BVBBV045920891 |
discipline | Informatik |
doi_str_mv | 10.1017/9781108587792 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04305nmm a22005418c 4500</leader><controlfield tag="001">BV045920891</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220906 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190607s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108587792</subfield><subfield code="c">Online, PDF</subfield><subfield code="9">978-1-10858779-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108587792</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108587792</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1104881731</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045920891</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial intelligence and conservation</subfield><subfield code="c">edited by Fei Fang, Carnegie Mellon University, Milind Tambe, University of Southern California, Bistra Dilkina, Georgia Institute of Technology, Andrew J. Plumptre, Key Biodiversity Areas Secretariat</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Law enforcement for wildlife conservation -- Wildlife poaching forecasting based on ranger-collected data and evaluation through field tests -- Optimal patrol planning against black-box attackers -- Automatic detection of poachers and wildlife with UAVs -- Protecting coral reef ecosystems via efficient patrols -- Simultaneous optimization of strategic and tactical planning for environmental sustainability and security -- NECTAR: enforcing environmental compliance through strategically randomized factory inspections -- Connecting conservation research and implementation: building a wildfire assistant -- Probablistic inference with generating functions for animal populations -- Engaging citizen scientists in data collection for conservation -- Simulator-defined markov decision processes: a case study in managing bio-invasions</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">With the increasing public interest in artificial intelligence (AI), there is also increasing interest in learning about the benefits that AI can deliver to society. This book focuses on research advances in AI that benefit the conservation of wildlife, forests, coral reefs, rivers, and other natural resources. It presents how the joint efforts of researchers in computer science, ecology, economics, and psychology help address the goals of the United Nations' 2030 Agenda for Sustainable Development. Written at a level accessible to conservation professionals and AI researchers, the book offers both an overview of the field and an in-depth view of how AI is being used to understand patterns in wildlife poaching and enhance patrol efforts in response, covering research advances, field tests and real-world deployments. The book also features efforts in other major conservation directions, including protecting natural resources, ecosystem monitoring, and bio-invasion management through the use of game theory, machine learning, and optimization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Artenschutz</subfield><subfield code="0">(DE-588)4112598-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Wildlife conservation / Technological innovations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Artenschutz</subfield><subfield code="0">(DE-588)4112598-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Fei</subfield><subfield code="d">1989-</subfield><subfield code="0">(DE-588)1186842245</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tambe, Milind</subfield><subfield code="0">(DE-588)1161469362</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dilkina, Bistra</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Plumptre, Andrew J.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-10846473-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108587792</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031303386</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108587792</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108587792</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108587792</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UER_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108587792</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UPA_PDA_CBO_Kauf2019</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV045920891 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:30:22Z |
institution | BVB |
isbn | 9781108587792 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031303386 |
oclc_num | 1104881731 |
open_access_boolean | |
owner | DE-12 DE-29 DE-739 DE-92 |
owner_facet | DE-12 DE-29 DE-739 DE-92 |
physical | 1 Online-Ressource |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UER_PDA_CBO_Kauf ZDB-20-CBO UPA_PDA_CBO_Kauf2019 |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Artificial intelligence and conservation edited by Fei Fang, Carnegie Mellon University, Milind Tambe, University of Southern California, Bistra Dilkina, Georgia Institute of Technology, Andrew J. Plumptre, Key Biodiversity Areas Secretariat Cambridge, United Kingdom ; New York, NY Cambridge University Press 2019 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Law enforcement for wildlife conservation -- Wildlife poaching forecasting based on ranger-collected data and evaluation through field tests -- Optimal patrol planning against black-box attackers -- Automatic detection of poachers and wildlife with UAVs -- Protecting coral reef ecosystems via efficient patrols -- Simultaneous optimization of strategic and tactical planning for environmental sustainability and security -- NECTAR: enforcing environmental compliance through strategically randomized factory inspections -- Connecting conservation research and implementation: building a wildfire assistant -- Probablistic inference with generating functions for animal populations -- Engaging citizen scientists in data collection for conservation -- Simulator-defined markov decision processes: a case study in managing bio-invasions With the increasing public interest in artificial intelligence (AI), there is also increasing interest in learning about the benefits that AI can deliver to society. This book focuses on research advances in AI that benefit the conservation of wildlife, forests, coral reefs, rivers, and other natural resources. It presents how the joint efforts of researchers in computer science, ecology, economics, and psychology help address the goals of the United Nations' 2030 Agenda for Sustainable Development. Written at a level accessible to conservation professionals and AI researchers, the book offers both an overview of the field and an in-depth view of how AI is being used to understand patterns in wildlife poaching and enhance patrol efforts in response, covering research advances, field tests and real-world deployments. The book also features efforts in other major conservation directions, including protecting natural resources, ecosystem monitoring, and bio-invasion management through the use of game theory, machine learning, and optimization Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Artenschutz (DE-588)4112598-8 gnd rswk-swf Wildlife conservation / Technological innovations Artificial intelligence (DE-588)4143413-4 Aufsatzsammlung gnd-content Künstliche Intelligenz (DE-588)4033447-8 s Artenschutz (DE-588)4112598-8 s DE-604 Fang, Fei 1989- (DE-588)1186842245 edt Tambe, Milind (DE-588)1161469362 edt Dilkina, Bistra edt Plumptre, Andrew J. edt Erscheint auch als Druck-Ausgabe, Paperback 978-1-10846473-4 https://doi.org/10.1017/9781108587792 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Artificial intelligence and conservation Law enforcement for wildlife conservation -- Wildlife poaching forecasting based on ranger-collected data and evaluation through field tests -- Optimal patrol planning against black-box attackers -- Automatic detection of poachers and wildlife with UAVs -- Protecting coral reef ecosystems via efficient patrols -- Simultaneous optimization of strategic and tactical planning for environmental sustainability and security -- NECTAR: enforcing environmental compliance through strategically randomized factory inspections -- Connecting conservation research and implementation: building a wildfire assistant -- Probablistic inference with generating functions for animal populations -- Engaging citizen scientists in data collection for conservation -- Simulator-defined markov decision processes: a case study in managing bio-invasions Künstliche Intelligenz (DE-588)4033447-8 gnd Artenschutz (DE-588)4112598-8 gnd |
subject_GND | (DE-588)4033447-8 (DE-588)4112598-8 (DE-588)4143413-4 |
title | Artificial intelligence and conservation |
title_auth | Artificial intelligence and conservation |
title_exact_search | Artificial intelligence and conservation |
title_full | Artificial intelligence and conservation edited by Fei Fang, Carnegie Mellon University, Milind Tambe, University of Southern California, Bistra Dilkina, Georgia Institute of Technology, Andrew J. Plumptre, Key Biodiversity Areas Secretariat |
title_fullStr | Artificial intelligence and conservation edited by Fei Fang, Carnegie Mellon University, Milind Tambe, University of Southern California, Bistra Dilkina, Georgia Institute of Technology, Andrew J. Plumptre, Key Biodiversity Areas Secretariat |
title_full_unstemmed | Artificial intelligence and conservation edited by Fei Fang, Carnegie Mellon University, Milind Tambe, University of Southern California, Bistra Dilkina, Georgia Institute of Technology, Andrew J. Plumptre, Key Biodiversity Areas Secretariat |
title_short | Artificial intelligence and conservation |
title_sort | artificial intelligence and conservation |
topic | Künstliche Intelligenz (DE-588)4033447-8 gnd Artenschutz (DE-588)4112598-8 gnd |
topic_facet | Künstliche Intelligenz Artenschutz Aufsatzsammlung |
url | https://doi.org/10.1017/9781108587792 |
work_keys_str_mv | AT fangfei artificialintelligenceandconservation AT tambemilind artificialintelligenceandconservation AT dilkinabistra artificialintelligenceandconservation AT plumptreandrewj artificialintelligenceandconservation |