Obtaining value from big data for service delivery
1. Introduction -- 2. Applications of big data to service delivery -- 3. Analyzing big data for successful results -- 4. Big data infrastructure, a technical architecture overview -- 5. Building an effective big data organization -- 6. Issues and challenges in big data and analytics -- 7. Conclusion...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, New York (222 East 46th Street, New York, NY 10017)
Business Expert Press
2016
|
Ausgabe: | First edition |
Schriftenreihe: | Service systems and innovations in business and society collection
|
Schlagworte: | |
Online-Zugang: | DE-92 DE-863 DE-862 DE-706 URL des Erstveröffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV045876159 | ||
003 | DE-604 | ||
005 | 20240419 | ||
007 | cr|uuu---uuuuu | ||
008 | 190514s2016 xx o|||| 00||| eng d | ||
020 | |a 9781631572234 |9 978-1-63157-223-4 | ||
020 | |a 9781631572227 |9 978-1-63157-222-7 | ||
035 | |a (ZDB-191-BEX)11135852 | ||
035 | |a (OCoLC)935736421 | ||
035 | |a (DE-599)BVBBV045876159 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-863 |a DE-862 |a DE-92 |a DE-706 | ||
082 | 0 | |a 004.654 |2 23 | |
100 | 1 | |a Kaisler, Stephen H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Obtaining value from big data for service delivery |c Stephen H. Kaisler, Frank Armour, J. Alberto Espinosa, and William H. Money |
250 | |a First edition | ||
264 | 1 | |a New York, New York (222 East 46th Street, New York, NY 10017) |b Business Expert Press |c 2016 | |
300 | |a Online-Ressource (xxi, 176 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Service systems and innovations in business and society collection | |
500 | |a Includes bibliographical references (pages 161-168) and index | ||
520 | |a 1. Introduction -- 2. Applications of big data to service delivery -- 3. Analyzing big data for successful results -- 4. Big data infrastructure, a technical architecture overview -- 5. Building an effective big data organization -- 6. Issues and challenges in big data and analytics -- 7. Conclusion: capturing the value of big data projects -- Appendix A. Methods-based analytics taxonomy -- References -- Further reading -- Glossary -- Index | ||
520 | |a Big data is an emerging phenomenon that has enormous implications and impacts upon business strategy, profitability, and process improvements. All service systems generate big data these days, especially human-centered service systems such as government (including cities), healthcare, education, retail, finance, and so on. It has been characterized as the collection, analysis and use of data characterized by the five Vs: volume, velocity, variety, veracity, and value (of data). As the plethora of data sources grows from sensors, social media, and electronic transactions, new methods for collecting or acquiring, integrating, processing, analyzing, understanding, and visualizing data to provide actionable information and support integrated and timely senior and executive decision-making are required. The discipline of applying analytic processes to find and combine new sources of data and extract hidden crucial decision-making information from the oceans of data is rapidly developing, but requires expertise to apply in ways that will yield useful, actionable results for service organizations. Many service-oriented organizations that are just beginning to invest in big data collection, storage, and analysis need to address the numerous issues and challenges that abound--technological, managerial, and legal. Other organizations that have begun to use new data tools and techniques must keep up with the rapidly changing and snowballing work in the field. This booklet will help middle, senior, and executive managers to understand what big data is; how to recognize, collect, process, and analyze it; how to store and manage it; how to obtain useful information from it; and how to assess its contribution to operational, tactical, and strategic decision-making in service-oriented organizations | ||
650 | 4 | |a Service-oriented architecture (Computer science) | |
650 | 4 | |a Big data | |
700 | 1 | |a Armour, Frank. |4 aut | |
700 | 1 | |a Espinosa, J. Alberto. |4 aut | |
700 | 1 | |a Money, William H. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781631572227 |
856 | 4 | 0 | |u http://portal.igpublish.com/iglibrary/search/BEPB0000448.html |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-191-BEX | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-031259376 | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/BEPB0000448.html |l DE-92 |p ZDB-191-BEX |x Verlag |3 Volltext | |
966 | e | |u http://portal.igpublish.com/iglibrary/search/BEPB0000448.html |l DE-863 |p ZDB-191-BEX |x Verlag |3 Volltext | |
966 | e | |u http://portal.igpublish.com/iglibrary/search/BEPB0000448.html |l DE-862 |p ZDB-191-BEX |x Verlag |3 Volltext | |
966 | e | |u http://portal.igpublish.com/iglibrary/search/BEPB0000448.html |l DE-706 |p ZDB-191-BEX |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1819305964604489728 |
---|---|
any_adam_object | |
author | Kaisler, Stephen H. Armour, Frank Espinosa, J. Alberto Money, William H. |
author_facet | Kaisler, Stephen H. Armour, Frank Espinosa, J. Alberto Money, William H. |
author_role | aut aut aut aut |
author_sort | Kaisler, Stephen H. |
author_variant | s h k sh shk f a fa j a e ja jae w h m wh whm |
building | Verbundindex |
bvnumber | BV045876159 |
collection | ZDB-191-BEX |
ctrlnum | (ZDB-191-BEX)11135852 (OCoLC)935736421 (DE-599)BVBBV045876159 |
dewey-full | 004.654 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.654 |
dewey-search | 004.654 |
dewey-sort | 14.654 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04388nam a2200493zc 4500</leader><controlfield tag="001">BV045876159</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240419 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190514s2016 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781631572234</subfield><subfield code="9">978-1-63157-223-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781631572227</subfield><subfield code="9">978-1-63157-222-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-191-BEX)11135852</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)935736421</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045876159</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.654</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kaisler, Stephen H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Obtaining value from big data for service delivery</subfield><subfield code="c">Stephen H. Kaisler, Frank Armour, J. Alberto Espinosa, and William H. Money</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, New York (222 East 46th Street, New York, NY 10017)</subfield><subfield code="b">Business Expert Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource (xxi, 176 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Service systems and innovations in business and society collection</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 161-168) and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">1. Introduction -- 2. Applications of big data to service delivery -- 3. Analyzing big data for successful results -- 4. Big data infrastructure, a technical architecture overview -- 5. Building an effective big data organization -- 6. Issues and challenges in big data and analytics -- 7. Conclusion: capturing the value of big data projects -- Appendix A. Methods-based analytics taxonomy -- References -- Further reading -- Glossary -- Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Big data is an emerging phenomenon that has enormous implications and impacts upon business strategy, profitability, and process improvements. All service systems generate big data these days, especially human-centered service systems such as government (including cities), healthcare, education, retail, finance, and so on. It has been characterized as the collection, analysis and use of data characterized by the five Vs: volume, velocity, variety, veracity, and value (of data). As the plethora of data sources grows from sensors, social media, and electronic transactions, new methods for collecting or acquiring, integrating, processing, analyzing, understanding, and visualizing data to provide actionable information and support integrated and timely senior and executive decision-making are required. The discipline of applying analytic processes to find and combine new sources of data and extract hidden crucial decision-making information from the oceans of data is rapidly developing, but requires expertise to apply in ways that will yield useful, actionable results for service organizations. Many service-oriented organizations that are just beginning to invest in big data collection, storage, and analysis need to address the numerous issues and challenges that abound--technological, managerial, and legal. Other organizations that have begun to use new data tools and techniques must keep up with the rapidly changing and snowballing work in the field. This booklet will help middle, senior, and executive managers to understand what big data is; how to recognize, collect, process, and analyze it; how to store and manage it; how to obtain useful information from it; and how to assess its contribution to operational, tactical, and strategic decision-making in service-oriented organizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Service-oriented architecture (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Armour, Frank.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Espinosa, J. Alberto.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Money, William H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781631572227</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://portal.igpublish.com/iglibrary/search/BEPB0000448.html</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-191-BEX</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031259376</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/BEPB0000448.html</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-191-BEX</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://portal.igpublish.com/iglibrary/search/BEPB0000448.html</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-191-BEX</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://portal.igpublish.com/iglibrary/search/BEPB0000448.html</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-191-BEX</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://portal.igpublish.com/iglibrary/search/BEPB0000448.html</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-191-BEX</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045876159 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T07:29:32Z |
institution | BVB |
isbn | 9781631572234 9781631572227 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031259376 |
oclc_num | 935736421 |
open_access_boolean | |
owner | DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-92 DE-706 |
owner_facet | DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-92 DE-706 |
physical | Online-Ressource (xxi, 176 pages) |
psigel | ZDB-191-BEX |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Business Expert Press |
record_format | marc |
series2 | Service systems and innovations in business and society collection |
spelling | Kaisler, Stephen H. Verfasser aut Obtaining value from big data for service delivery Stephen H. Kaisler, Frank Armour, J. Alberto Espinosa, and William H. Money First edition New York, New York (222 East 46th Street, New York, NY 10017) Business Expert Press 2016 Online-Ressource (xxi, 176 pages) txt rdacontent c rdamedia cr rdacarrier Service systems and innovations in business and society collection Includes bibliographical references (pages 161-168) and index 1. Introduction -- 2. Applications of big data to service delivery -- 3. Analyzing big data for successful results -- 4. Big data infrastructure, a technical architecture overview -- 5. Building an effective big data organization -- 6. Issues and challenges in big data and analytics -- 7. Conclusion: capturing the value of big data projects -- Appendix A. Methods-based analytics taxonomy -- References -- Further reading -- Glossary -- Index Big data is an emerging phenomenon that has enormous implications and impacts upon business strategy, profitability, and process improvements. All service systems generate big data these days, especially human-centered service systems such as government (including cities), healthcare, education, retail, finance, and so on. It has been characterized as the collection, analysis and use of data characterized by the five Vs: volume, velocity, variety, veracity, and value (of data). As the plethora of data sources grows from sensors, social media, and electronic transactions, new methods for collecting or acquiring, integrating, processing, analyzing, understanding, and visualizing data to provide actionable information and support integrated and timely senior and executive decision-making are required. The discipline of applying analytic processes to find and combine new sources of data and extract hidden crucial decision-making information from the oceans of data is rapidly developing, but requires expertise to apply in ways that will yield useful, actionable results for service organizations. Many service-oriented organizations that are just beginning to invest in big data collection, storage, and analysis need to address the numerous issues and challenges that abound--technological, managerial, and legal. Other organizations that have begun to use new data tools and techniques must keep up with the rapidly changing and snowballing work in the field. This booklet will help middle, senior, and executive managers to understand what big data is; how to recognize, collect, process, and analyze it; how to store and manage it; how to obtain useful information from it; and how to assess its contribution to operational, tactical, and strategic decision-making in service-oriented organizations Service-oriented architecture (Computer science) Big data Armour, Frank. aut Espinosa, J. Alberto. aut Money, William H. aut Erscheint auch als Druck-Ausgabe 9781631572227 http://portal.igpublish.com/iglibrary/search/BEPB0000448.html Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Kaisler, Stephen H. Armour, Frank Espinosa, J. Alberto Money, William H. Obtaining value from big data for service delivery Service-oriented architecture (Computer science) Big data |
title | Obtaining value from big data for service delivery |
title_auth | Obtaining value from big data for service delivery |
title_exact_search | Obtaining value from big data for service delivery |
title_full | Obtaining value from big data for service delivery Stephen H. Kaisler, Frank Armour, J. Alberto Espinosa, and William H. Money |
title_fullStr | Obtaining value from big data for service delivery Stephen H. Kaisler, Frank Armour, J. Alberto Espinosa, and William H. Money |
title_full_unstemmed | Obtaining value from big data for service delivery Stephen H. Kaisler, Frank Armour, J. Alberto Espinosa, and William H. Money |
title_short | Obtaining value from big data for service delivery |
title_sort | obtaining value from big data for service delivery |
topic | Service-oriented architecture (Computer science) Big data |
topic_facet | Service-oriented architecture (Computer science) Big data |
url | http://portal.igpublish.com/iglibrary/search/BEPB0000448.html |
work_keys_str_mv | AT kaislerstephenh obtainingvaluefrombigdataforservicedelivery AT armourfrank obtainingvaluefrombigdataforservicedelivery AT espinosajalberto obtainingvaluefrombigdataforservicedelivery AT moneywilliamh obtainingvaluefrombigdataforservicedelivery |