Applied stochastic analysis

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: E, Weinan 1963- (VerfasserIn), Li, Tiejun 1974- (VerfasserIn), Vanden-Eijnden, Eric 1968- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Providence, Rhode Island American Mathematical Society [2019]
Schriftenreihe:Graduate studies in mathematics 199
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000008cb4500
001 BV045538701
003 DE-604
005 20230221
007 t
008 190402s2019 b||| 00||| eng d
020 |a 9781470465698  |c pb  |9 978-1-4704-6569-8 
020 |a 9781470449339  |c hc  |9 978-1-4704-4933-9 
035 |a (OCoLC)1107327586 
035 |a (DE-599)BVBBV045538701 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-91G  |a DE-188  |a DE-83  |a DE-739  |a DE-703 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a 60J22  |2 msc 
084 |a MAT 606f  |2 stub 
100 1 |a E, Weinan  |d 1963-  |e Verfasser  |0 (DE-588)139594116  |4 aut 
245 1 0 |a Applied stochastic analysis  |c Weinan E, Tiejun Li, Eric Vanden-Eijnden 
264 1 |a Providence, Rhode Island  |b American Mathematical Society  |c [2019] 
264 4 |c © 2019 
300 |a xxi, 305 Seiten 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Graduate studies in mathematics  |v 199 
650 0 7 |a Stochastische Analysis  |0 (DE-588)4132272-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Stochastische Analysis  |0 (DE-588)4132272-1  |D s 
689 0 |5 DE-604 
700 1 |a Li, Tiejun  |d 1974-  |e Verfasser  |0 (DE-588)118986102X  |4 aut 
700 1 |a Vanden-Eijnden, Eric  |d 1968-  |e Verfasser  |0 (DE-588)1182918263  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-1-4704-4933-9 
830 0 |a Graduate studies in mathematics  |v 199  |w (DE-604)BV009739289  |9 199 
856 4 2 |m Digitalisierung UB Passau - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030922680&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-030922680 

Datensatz im Suchindex

DE-BY-TUM_call_number 0202/MAT 606f 2019 B 1092
DE-BY-TUM_katkey 2400099
DE-BY-TUM_media_number 040008859614
_version_ 1816714508802981888
adam_text Contents Introduction to the Series xiii Preface xvii Notation xix Part 1. Fundamentals Random Variables З §1.1. Elementary Examples З §1.2. Probability Space 5 §1.3. Conditional Probability 6 §1.4. Discrete Distributions 7 §1.5. Continuous Distributions 8 §1.6. Independence 12 §1.7. Conditional Expectation 14 §1.8. Notions of Convergence 16 §1.9. Characteristic Function 17 Chapter 1. §1.10. Generating Function and Cumulants 19 §1.11. The Borel-Cantelli Lemma 21 Exercises 24 Notes 27 Chapter 2. Limit Theorems 29 §2.1. The Law of Large Numbers 29 §2.2. Central Limit Theorem 31 §2.3. Cramer’s Theorem for Large Deviations 32 §2.4. Statistics of Extrema Exercises 40 42 Notes 44 Chapter 3. Markov Chains 45 46 §3.1. §3.2. Discrete Time Finite Markov Chains Invariant Distribution §3.3. §3.4. §3.5. Ergodic Theorem for Finite Markov Chains Poisson Processes Q-prcæesses 51 §3.6. §3.7. Embedded Chain and Irreducibility Ergodic Theorem for Q-processes 57 §3.8. §3.9. Time Reversal Hidden Markov Model 59 61 48 53 54 59 §3.10. Networks and Markov Chains Exercises 67 Notes 73 Chapter 4. Monte Carlo Methods §4.1. Numerical Integration §4.2. Generation of Random Variables §4.3. §4.4. Variance Reduction The Metropolis Algorithm §4.5. Kinetic Monte Carlo §4.6. Simulated Tempering 71 75 76 77 83 87 91 92 94 §4.7. Simulated Annealing Exercises 96 Notes 98 Chapter 5. Stochastic Processes 101 §5.1. §5.2. Axiomatic Construction of Stochastic Process Filtration and Stopping Time 102 §5.3. Markov Processes 106 109 §5.4. Gaussian Processes Exercises Notes 104 113 114 Chapter 6. Wiener Process 117 118 §6.1. The Diffusion Limit of Random Walks §6.2. §6.3. The Invariance Principle Wiener Process as a Gaussian Process 120 §6.4. Wiener Process as a Markov Process 125 §6.5. Properties of the Wiener Process 126 §6.6. §6.7. Wiener Process under Constraints Wiener Chaos Expansion 130 Exercises Notes Chapter 7. Stochastic Differential Equations 121 132 135 137 139 §7.1. §7.2. ltd Integral Itô’s Formula 140 144 §7.3. §7.4. Stochastic Differential Equations Stratonovich Integral 148 154 §7.5. Numerical Schemes and Analysis 156 §7.6. Multilevel Monte Carlo Method 162 Exercises 165 167 Notes Chapter 8. Fokker-Planck Equation 169 170 §8.1. Fokker-Planck Equation §8.2. Boundary Condition §8.3. §8.4. The Backward Equation Invariant Distribution §8.5. §8.6. The Markov Semigroup Feynman-Kac Formula 178 180 §8.7. §8.8. Boundary Value Problems Spectral Theory 181 183 173 175 176 §8.9. Asymptotic Analysis of SDEs §8.10. Weak Convergence 185 188 Exercises 193 194 Notes Part 2. Advanced Topics Chapter 9. Path Integral §9.1. Formal Wiener Measure §9.2. Girsanov Transformation §9.3. Feynman-Kac Formula Revisited Exercises Notes Chapter 10. §10.1. Random Fields Examples of Random Fields 199 200 203 207 208 208 209 210 §10.2. Gaussian Random Fields §10.3. Gibbs Distribution and Markov Random Fields Exercise 214 Notes 216 Chapter 11. Introduction to Statistical Mechanics 212 216 217 §11.1. §11.2. Thermodynamic Heuristics Equilibrium Statistical Mechanics 219 224 §11.3. §11.4. §11.5. Generalized Langevin Equation Linear Response Theory The Mori-Zwanzig Reduction 233 §11.6. Kac-Zwanzig Model Exercises Notes Chapter 12. 240 242 244 Rare Events §12.1. Metastability and Transition Events §12.2. §12.3. WKB Analysis Transition Rates §12.4. §12.5. Large Deviation Theory and Transition Paths Computing the Minimum Energy Paths §12.6. Quasipotential and Energy Landscape Exercises Notes 236 238 245 246 248 249 250 253 254 259 260 Chapter 13. Introduction to Chemical Reaction Kinetics 261 262 §13.1. §13.2. Reaction Rate Equations Chemical Master Equation §13.3. Stochastic Differential Equations 263 265 §13.4. Stochastic Simulation Algorithm 266 §13.5. §13.6. The Large Volume Limit Diffusion Approximation 266 268 §13.7. §13.8. The Tau-leaping Algorithm Stationary Distribution 269 §13.9. Muffiscale Analysis of a Chemical Kinetic System 271 272 Exercises 277 Notes 277 Appendix 279 A. Laplace Asymptotics and Varadhan’s Lemma B. Gronwalľs Inequality 279 281 C. Measure and Integration D. Martingales E. Strong Markov Property 282 284 F. Semigroup of Operators 286 285 Bibliography 289 Index 301
any_adam_object 1
author E, Weinan 1963-
Li, Tiejun 1974-
Vanden-Eijnden, Eric 1968-
author_GND (DE-588)139594116
(DE-588)118986102X
(DE-588)1182918263
author_facet E, Weinan 1963-
Li, Tiejun 1974-
Vanden-Eijnden, Eric 1968-
author_role aut
aut
aut
author_sort E, Weinan 1963-
author_variant w e we
t l tl
e v e eve
building Verbundindex
bvnumber BV045538701
classification_rvk SK 820
classification_tum MAT 606f
ctrlnum (OCoLC)1107327586
(DE-599)BVBBV045538701
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01777nam a22004218cb4500</leader><controlfield tag="001">BV045538701</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230221 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190402s2019 b||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470465698</subfield><subfield code="c">pb</subfield><subfield code="9">978-1-4704-6569-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470449339</subfield><subfield code="c">hc</subfield><subfield code="9">978-1-4704-4933-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1107327586</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045538701</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60J22</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">E, Weinan</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139594116</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied stochastic analysis</subfield><subfield code="c">Weinan E, Tiejun Li, Eric Vanden-Eijnden</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxi, 305 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">199</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Tiejun</subfield><subfield code="d">1974-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118986102X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vanden-Eijnden, Eric</subfield><subfield code="d">1968-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1182918263</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4704-4933-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">199</subfield><subfield code="w">(DE-604)BV009739289</subfield><subfield code="9">199</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=030922680&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030922680</subfield></datafield></record></collection>
id DE-604.BV045538701
illustrated Not Illustrated
indexdate 2024-11-25T17:57:35Z
institution BVB
isbn 9781470465698
9781470449339
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030922680
oclc_num 1107327586
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-188
DE-83
DE-739
DE-703
owner_facet DE-91G
DE-BY-TUM
DE-188
DE-83
DE-739
DE-703
physical xxi, 305 Seiten
publishDate 2019
publishDateSearch 2019
publishDateSort 2019
publisher American Mathematical Society
record_format marc
series Graduate studies in mathematics
series2 Graduate studies in mathematics
spellingShingle E, Weinan 1963-
Li, Tiejun 1974-
Vanden-Eijnden, Eric 1968-
Applied stochastic analysis
Graduate studies in mathematics
Stochastische Analysis (DE-588)4132272-1 gnd
subject_GND (DE-588)4132272-1
title Applied stochastic analysis
title_auth Applied stochastic analysis
title_exact_search Applied stochastic analysis
title_full Applied stochastic analysis Weinan E, Tiejun Li, Eric Vanden-Eijnden
title_fullStr Applied stochastic analysis Weinan E, Tiejun Li, Eric Vanden-Eijnden
title_full_unstemmed Applied stochastic analysis Weinan E, Tiejun Li, Eric Vanden-Eijnden
title_short Applied stochastic analysis
title_sort applied stochastic analysis
topic Stochastische Analysis (DE-588)4132272-1 gnd
topic_facet Stochastische Analysis
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030922680&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV009739289
work_keys_str_mv AT eweinan appliedstochasticanalysis
AT litiejun appliedstochasticanalysis
AT vandeneijndeneric appliedstochasticanalysis