Python machine learning unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Raschka, Sebastian (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Birmingham, UK Packt Publishing 2015
Schriftenreihe:Community experience distilled
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV045351326
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 181210s2015 xx a||| o|||| 00||| eng d
020 |a 9781783555147  |9 978-1-78355-514-7 
020 |a 1783555149  |9 1-78355-514-9 
020 |a 1783555130  |9 1-78355-513-0 
020 |a 9781783555130  |9 978-1-78355-513-0 
035 |a (ZDB-4-ITC)ocn922532674 
035 |a (OCoLC)922532674 
035 |a (DE-599)BVBBV045351326 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
082 0 |a 005.13/3  |2 23 
084 |a ST 250  |0 (DE-625)143626:  |2 rvk 
100 1 |a Raschka, Sebastian  |e Verfasser  |4 aut 
245 1 0 |a Python machine learning  |b unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics  |c Sebastian Raschka ; foreword by Dr. Randal S. Olson 
264 1 |a Birmingham, UK  |b Packt Publishing  |c 2015 
300 |a 1 online resource  |b illustrations 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Community experience distilled 
500 |a Includes index 
500 |a Online resource; title from EPUB title page (OverDrive, January 04, 2016) 
505 8 |a Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analyticsAbout This BookLeverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualizationLearn effective strategies and best practices to improve and optimize machine learning systems and algorithmsAsk - and answer - tough questions of your data with robust statistical models, built for a range of datasetsWho This Book Is ForIf you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning - whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource.  
505 8 |a What You Will LearnExplore how to use different machine learning models to ask different questions of your dataLearn how to build neural networks using Pylearn 2 and TheanoFind out how to write clean and elegant Python code that will optimize the strength of your algorithmsDiscover how to embed your machine learning model in a web application for increased accessibilityPredict continuous target outcomes using regression analysisUncover hidden patterns and structures in data with clusteringOrganize data using effective pre-processing techniquesGet to grips with sentiment analysis to delve deeper into textual and social media dataIn DetailMachine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace.  
505 8 |a Python can help you deliver key insights into your data - its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Pylearn2, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization.  
505 8 |a Style and approachPython Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models 
650 7 |a COMPUTERS / Programming Languages / Python  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
650 4 |a Python (Computer program language)  |a Machine learning 
650 0 7 |a Python 3.5  |0 (DE-588)1113598565  |2 gnd  |9 rswk-swf 
650 0 7 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Datenanalyse  |0 (DE-588)4123037-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Python 3.4  |0 (DE-588)1053433689  |2 gnd  |9 rswk-swf 
650 0 7 |a Big Data  |0 (DE-588)4802620-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Python  |g Programmiersprache  |0 (DE-588)4434275-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |D s 
689 0 1 |a Datenanalyse  |0 (DE-588)4123037-1  |D s 
689 0 2 |a Big Data  |0 (DE-588)4802620-7  |D s 
689 0 3 |a Python 3.4  |0 (DE-588)1053433689  |D s 
689 0 4 |a Python 3.5  |0 (DE-588)1113598565  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Python  |g Programmiersprache  |0 (DE-588)4434275-5  |D s 
689 1 1 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |D s 
689 1 |8 2\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Raschka, Sebastian  |t Python Machine Learning  |d Birmingham : Packt Publishing Ltd, 2015  |z 9781783555130 
912 |a ZDB-4-ITC 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030737979 

Datensatz im Suchindex

_version_ 1819303935447400448
any_adam_object
author Raschka, Sebastian
author_facet Raschka, Sebastian
author_role aut
author_sort Raschka, Sebastian
author_variant s r sr
building Verbundindex
bvnumber BV045351326
classification_rvk ST 250
collection ZDB-4-ITC
contents Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analyticsAbout This BookLeverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualizationLearn effective strategies and best practices to improve and optimize machine learning systems and algorithmsAsk - and answer - tough questions of your data with robust statistical models, built for a range of datasetsWho This Book Is ForIf you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning - whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource.
What You Will LearnExplore how to use different machine learning models to ask different questions of your dataLearn how to build neural networks using Pylearn 2 and TheanoFind out how to write clean and elegant Python code that will optimize the strength of your algorithmsDiscover how to embed your machine learning model in a web application for increased accessibilityPredict continuous target outcomes using regression analysisUncover hidden patterns and structures in data with clusteringOrganize data using effective pre-processing techniquesGet to grips with sentiment analysis to delve deeper into textual and social media dataIn DetailMachine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace.
Python can help you deliver key insights into your data - its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Pylearn2, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization.
Style and approachPython Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models
ctrlnum (ZDB-4-ITC)ocn922532674
(OCoLC)922532674
(DE-599)BVBBV045351326
dewey-full 005.13/3
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 005 - Computer programming, programs, data, security
dewey-raw 005.13/3
dewey-search 005.13/3
dewey-sort 15.13 13
dewey-tens 000 - Computer science, information, general works
discipline Informatik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05664nam a2200673zc 4500</leader><controlfield tag="001">BV045351326</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181210s2015 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781783555147</subfield><subfield code="9">978-1-78355-514-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1783555149</subfield><subfield code="9">1-78355-514-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1783555130</subfield><subfield code="9">1-78355-513-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781783555130</subfield><subfield code="9">978-1-78355-513-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ITC)ocn922532674</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)922532674</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045351326</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.13/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Raschka, Sebastian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Python machine learning</subfield><subfield code="b">unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics</subfield><subfield code="c">Sebastian Raschka ; foreword by Dr. Randal S. Olson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Community experience distilled</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; title from EPUB title page (OverDrive, January 04, 2016)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analyticsAbout This BookLeverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualizationLearn effective strategies and best practices to improve and optimize machine learning systems and algorithmsAsk - and answer - tough questions of your data with robust statistical models, built for a range of datasetsWho This Book Is ForIf you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning - whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">What You Will LearnExplore how to use different machine learning models to ask different questions of your dataLearn how to build neural networks using Pylearn 2 and TheanoFind out how to write clean and elegant Python code that will optimize the strength of your algorithmsDiscover how to embed your machine learning model in a web application for increased accessibilityPredict continuous target outcomes using regression analysisUncover hidden patterns and structures in data with clusteringOrganize data using effective pre-processing techniquesGet to grips with sentiment analysis to delve deeper into textual and social media dataIn DetailMachine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Python can help you deliver key insights into your data - its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Pylearn2, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Style and approachPython Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Programming Languages / Python</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python 3.5</subfield><subfield code="0">(DE-588)1113598565</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python 3.4</subfield><subfield code="0">(DE-588)1053433689</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Python 3.4</subfield><subfield code="0">(DE-588)1053433689</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Python 3.5</subfield><subfield code="0">(DE-588)1113598565</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Raschka, Sebastian</subfield><subfield code="t">Python Machine Learning</subfield><subfield code="d">Birmingham : Packt Publishing Ltd, 2015</subfield><subfield code="z">9781783555130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ITC</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030737979</subfield></datafield></record></collection>
id DE-604.BV045351326
illustrated Illustrated
indexdate 2024-12-24T06:57:02Z
institution BVB
isbn 9781783555147
1783555149
1783555130
9781783555130
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030737979
oclc_num 922532674
open_access_boolean
physical 1 online resource illustrations
psigel ZDB-4-ITC
publishDate 2015
publishDateSearch 2015
publishDateSort 2015
publisher Packt Publishing
record_format marc
series2 Community experience distilled
spelling Raschka, Sebastian Verfasser aut
Python machine learning unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics Sebastian Raschka ; foreword by Dr. Randal S. Olson
Birmingham, UK Packt Publishing 2015
1 online resource illustrations
txt rdacontent
c rdamedia
cr rdacarrier
Community experience distilled
Includes index
Online resource; title from EPUB title page (OverDrive, January 04, 2016)
Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analyticsAbout This BookLeverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualizationLearn effective strategies and best practices to improve and optimize machine learning systems and algorithmsAsk - and answer - tough questions of your data with robust statistical models, built for a range of datasetsWho This Book Is ForIf you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning - whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource.
What You Will LearnExplore how to use different machine learning models to ask different questions of your dataLearn how to build neural networks using Pylearn 2 and TheanoFind out how to write clean and elegant Python code that will optimize the strength of your algorithmsDiscover how to embed your machine learning model in a web application for increased accessibilityPredict continuous target outcomes using regression analysisUncover hidden patterns and structures in data with clusteringOrganize data using effective pre-processing techniquesGet to grips with sentiment analysis to delve deeper into textual and social media dataIn DetailMachine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace.
Python can help you deliver key insights into your data - its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Pylearn2, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization.
Style and approachPython Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models
COMPUTERS / Programming Languages / Python bisacsh
Machine learning fast
Python (Computer program language) fast
Python (Computer program language) Machine learning
Python 3.5 (DE-588)1113598565 gnd rswk-swf
Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf
Datenanalyse (DE-588)4123037-1 gnd rswk-swf
Python 3.4 (DE-588)1053433689 gnd rswk-swf
Big Data (DE-588)4802620-7 gnd rswk-swf
Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf
Maschinelles Lernen (DE-588)4193754-5 s
Datenanalyse (DE-588)4123037-1 s
Big Data (DE-588)4802620-7 s
Python 3.4 (DE-588)1053433689 s
Python 3.5 (DE-588)1113598565 s
1\p DE-604
Python Programmiersprache (DE-588)4434275-5 s
2\p DE-604
Erscheint auch als Druck-Ausgabe Raschka, Sebastian Python Machine Learning Birmingham : Packt Publishing Ltd, 2015 9781783555130
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Raschka, Sebastian
Python machine learning unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics
Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analyticsAbout This BookLeverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualizationLearn effective strategies and best practices to improve and optimize machine learning systems and algorithmsAsk - and answer - tough questions of your data with robust statistical models, built for a range of datasetsWho This Book Is ForIf you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning - whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource.
What You Will LearnExplore how to use different machine learning models to ask different questions of your dataLearn how to build neural networks using Pylearn 2 and TheanoFind out how to write clean and elegant Python code that will optimize the strength of your algorithmsDiscover how to embed your machine learning model in a web application for increased accessibilityPredict continuous target outcomes using regression analysisUncover hidden patterns and structures in data with clusteringOrganize data using effective pre-processing techniquesGet to grips with sentiment analysis to delve deeper into textual and social media dataIn DetailMachine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace.
Python can help you deliver key insights into your data - its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Pylearn2, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization.
Style and approachPython Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models
COMPUTERS / Programming Languages / Python bisacsh
Machine learning fast
Python (Computer program language) fast
Python (Computer program language) Machine learning
Python 3.5 (DE-588)1113598565 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
Datenanalyse (DE-588)4123037-1 gnd
Python 3.4 (DE-588)1053433689 gnd
Big Data (DE-588)4802620-7 gnd
Python Programmiersprache (DE-588)4434275-5 gnd
subject_GND (DE-588)1113598565
(DE-588)4193754-5
(DE-588)4123037-1
(DE-588)1053433689
(DE-588)4802620-7
(DE-588)4434275-5
title Python machine learning unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics
title_auth Python machine learning unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics
title_exact_search Python machine learning unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics
title_full Python machine learning unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics Sebastian Raschka ; foreword by Dr. Randal S. Olson
title_fullStr Python machine learning unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics Sebastian Raschka ; foreword by Dr. Randal S. Olson
title_full_unstemmed Python machine learning unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics Sebastian Raschka ; foreword by Dr. Randal S. Olson
title_short Python machine learning
title_sort python machine learning unlock deeper insights into machine learning with this vital guide to cutting edge predictive analytics
title_sub unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics
topic COMPUTERS / Programming Languages / Python bisacsh
Machine learning fast
Python (Computer program language) fast
Python (Computer program language) Machine learning
Python 3.5 (DE-588)1113598565 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
Datenanalyse (DE-588)4123037-1 gnd
Python 3.4 (DE-588)1053433689 gnd
Big Data (DE-588)4802620-7 gnd
Python Programmiersprache (DE-588)4434275-5 gnd
topic_facet COMPUTERS / Programming Languages / Python
Machine learning
Python (Computer program language)
Python (Computer program language) Machine learning
Python 3.5
Maschinelles Lernen
Datenanalyse
Python 3.4
Big Data
Python Programmiersprache
work_keys_str_mv AT raschkasebastian pythonmachinelearningunlockdeeperinsightsintomachinelearningwiththisvitalguidetocuttingedgepredictiveanalytics