A visual introduction to differential forms and calculus on manifolds

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Fortney, Jon P. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cham Birkhäuser [2018]
Schlagworte:
Online-Zugang:BTU01
FHR01
FRO01
FWS01
FWS02
HTW01
TUM01
UBM01
UBT01
UBW01
UEI01
UER01
UPA01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV045274933
003 DE-604
005 20220207
007 cr|uuu---uuuuu
008 181107s2018 |||| o||u| ||||||eng d
020 |a 9783319969923  |c Online  |9 978-3-319-96992-3 
024 7 |a 10.1007/978-3-319-96992-3  |2 doi 
035 |a (ZDB-2-SMA)9783319969923 
035 |a (OCoLC)1066034832 
035 |a (DE-599)BVBBV045274933 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-29  |a DE-91  |a DE-19  |a DE-898  |a DE-861  |a DE-523  |a DE-703  |a DE-863  |a DE-20  |a DE-739  |a DE-634  |a DE-862  |a DE-824 
082 0 |a 516.36  |2 23 
084 |a SK 370  |0 (DE-625)143234:  |2 rvk 
084 |a MAT 000  |2 stub 
100 1 |a Fortney, Jon P.  |e Verfasser  |0 (DE-588)1172934924  |4 aut 
245 1 0 |a A visual introduction to differential forms and calculus on manifolds  |c Jon Pierre Fortney 
264 1 |a Cham  |b Birkhäuser  |c [2018] 
300 |a 1 Online-Ressource (XII, 468 Seiten, 258 illus., 243 illus. in color) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
650 4 |a Differential Geometry 
650 4 |a Manifolds and Cell Complexes (incl. Diff.Topology) 
650 4 |a Global Analysis and Analysis on Manifolds 
650 4 |a Global differential geometry 
650 4 |a Cell aggregation / Mathematics 
650 4 |a Global analysis 
650 0 7 |a Mannigfaltigkeit  |0 (DE-588)4037379-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Differentialform  |0 (DE-588)4149772-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Analysis  |0 (DE-588)4001865-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Analysis  |0 (DE-588)4001865-9  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Mannigfaltigkeit  |0 (DE-588)4037379-4  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Differentialform  |0 (DE-588)4149772-7  |D s 
689 2 |8 3\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-3-319-96991-6 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-3-319-96993-0 
856 4 0 |u https://doi.org/10.1007/978-3-319-96992-3  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-2-SMA 
940 1 |q ZDB-2-SMA_2018 
999 |a oai:aleph.bib-bvb.de:BVB01-030662619 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
966 e |u https://doi.org/10.1007/978-3-319-96992-3  |l BTU01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-96992-3  |l FHR01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-96992-3  |l FRO01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-96992-3  |l FWS01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-96992-3  |l FWS02  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-96992-3  |l HTW01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-96992-3  |l TUM01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-96992-3  |l UBM01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-96992-3  |l UBT01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-96992-3  |l UBW01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-96992-3  |l UEI01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-96992-3  |l UER01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-96992-3  |l UPA01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-FWS_katkey 706579
DE-BY-TUM_katkey 2372607
DE-BY-TUM_local_url https://doi.org/10.1007/978-3-319-96992-3
Verlag
_version_ 1816714474223042560
any_adam_object
author Fortney, Jon P.
author_GND (DE-588)1172934924
author_facet Fortney, Jon P.
author_role aut
author_sort Fortney, Jon P.
author_variant j p f jp jpf
building Verbundindex
bvnumber BV045274933
classification_rvk SK 370
classification_tum MAT 000
collection ZDB-2-SMA
ctrlnum (ZDB-2-SMA)9783319969923
(OCoLC)1066034832
(DE-599)BVBBV045274933
dewey-full 516.36
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.36
dewey-search 516.36
dewey-sort 3516.36
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-319-96992-3
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03619nmm a2200745zc 4500</leader><controlfield tag="001">BV045274933</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220207 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181107s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319969923</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-96992-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-96992-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783319969923</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1066034832</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045274933</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fortney, Jon P.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1172934924</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A visual introduction to differential forms and calculus on manifolds</subfield><subfield code="c">Jon Pierre Fortney</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 468 Seiten, 258 illus., 243 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialform</subfield><subfield code="0">(DE-588)4149772-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Differentialform</subfield><subfield code="0">(DE-588)4149772-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-96991-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-96993-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-96992-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2018</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030662619</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-96992-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-96992-3</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-96992-3</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-96992-3</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-96992-3</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-96992-3</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-96992-3</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-96992-3</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-96992-3</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-96992-3</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-96992-3</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-96992-3</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-96992-3</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV045274933
illustrated Not Illustrated
indexdate 2024-11-25T17:57:35Z
institution BVB
isbn 9783319969923
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030662619
oclc_num 1066034832
open_access_boolean
owner DE-29
DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-898
DE-BY-UBR
DE-861
DE-523
DE-703
DE-863
DE-BY-FWS
DE-20
DE-739
DE-634
DE-862
DE-BY-FWS
DE-824
owner_facet DE-29
DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-898
DE-BY-UBR
DE-861
DE-523
DE-703
DE-863
DE-BY-FWS
DE-20
DE-739
DE-634
DE-862
DE-BY-FWS
DE-824
physical 1 Online-Ressource (XII, 468 Seiten, 258 illus., 243 illus. in color)
psigel ZDB-2-SMA
ZDB-2-SMA_2018
publishDate 2018
publishDateSearch 2018
publishDateSort 2018
publisher Birkhäuser
record_format marc
spellingShingle Fortney, Jon P.
A visual introduction to differential forms and calculus on manifolds
Differential Geometry
Manifolds and Cell Complexes (incl. Diff.Topology)
Global Analysis and Analysis on Manifolds
Global differential geometry
Cell aggregation / Mathematics
Global analysis
Mannigfaltigkeit (DE-588)4037379-4 gnd
Differentialform (DE-588)4149772-7 gnd
Analysis (DE-588)4001865-9 gnd
subject_GND (DE-588)4037379-4
(DE-588)4149772-7
(DE-588)4001865-9
title A visual introduction to differential forms and calculus on manifolds
title_auth A visual introduction to differential forms and calculus on manifolds
title_exact_search A visual introduction to differential forms and calculus on manifolds
title_full A visual introduction to differential forms and calculus on manifolds Jon Pierre Fortney
title_fullStr A visual introduction to differential forms and calculus on manifolds Jon Pierre Fortney
title_full_unstemmed A visual introduction to differential forms and calculus on manifolds Jon Pierre Fortney
title_short A visual introduction to differential forms and calculus on manifolds
title_sort a visual introduction to differential forms and calculus on manifolds
topic Differential Geometry
Manifolds and Cell Complexes (incl. Diff.Topology)
Global Analysis and Analysis on Manifolds
Global differential geometry
Cell aggregation / Mathematics
Global analysis
Mannigfaltigkeit (DE-588)4037379-4 gnd
Differentialform (DE-588)4149772-7 gnd
Analysis (DE-588)4001865-9 gnd
topic_facet Differential Geometry
Manifolds and Cell Complexes (incl. Diff.Topology)
Global Analysis and Analysis on Manifolds
Global differential geometry
Cell aggregation / Mathematics
Global analysis
Mannigfaltigkeit
Differentialform
Analysis
url https://doi.org/10.1007/978-3-319-96992-3
work_keys_str_mv AT fortneyjonp avisualintroductiontodifferentialformsandcalculusonmanifolds