Seismic Monitoring in Mines

Routine seismic monitoring in mines was introduced over 30 years ago with two main objectives in mind: • immediate location of larger seIsmIC events to guide rescue operations; • prediction of large rockmass instabilities. The first objective was achieved fairly quickly, but with the subsequent deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Mendecki, A. J. (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 1997
Schlagworte:
Online-Zugang:DE-634
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV045187392
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 180912s1997 xx o|||| 00||| eng d
020 |a 9789400915398  |9 978-94-009-1539-8 
024 7 |a 10.1007/978-94-009-1539-8  |2 doi 
035 |a (ZDB-2-ENG)978-94-009-1539-8 
035 |a (OCoLC)1053798350 
035 |a (DE-599)BVBBV045187392 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-634 
082 0 |a 624.15  |2 23 
245 1 0 |a Seismic Monitoring in Mines  |c edited by A. J. Mendecki 
264 1 |a Dordrecht  |b Springer Netherlands  |c 1997 
300 |a 1 Online-Ressource (XIII, 262 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
520 |a Routine seismic monitoring in mines was introduced over 30 years ago with two main objectives in mind: • immediate location of larger seIsmIC events to guide rescue operations; • prediction of large rockmass instabilities. The first objective was achieved fairly quickly, but with the subsequent development of mine communication systems, its strategic importance has diminished. The very limited success with prediction can, at least partially, be attributed to three factors: • seismic monitoring systems based on analogue technology that provided noisy and, frequently, poorly calibrated data of limited dynamic range; • the non-quantitative description of a seismic event by at best its local magnitude; and • the resultant non-quantitative analysis of seismicity, frequently through parameters of some statistical distributions, with a somewhat loose but imaginative physical interpretation. The introduction of modern digital seismic systems to mines and progress in the theory and methods of quantitative seismology have enabled the implementation of realtime seismic monitoring as a management tool, quantifying rockmass response to mining and achieving the first tangible results with prediction. A seismic event, being a sudden inelastic deformation within the rockmass, can now routinely be quantified in terms of seismic moment, its tensor, and radiated seismic energy, so that the overall size of, and stress released at, the seismic source can be estimated 
650 4 |a Engineering 
650 4 |a Geoengineering, Foundations, Hydraulics 
650 4 |a Geotechnical Engineering & Applied Earth Sciences 
650 4 |a Geophysics/Geodesy 
650 4 |a Engineering 
650 4 |a Geophysics 
650 4 |a Geotechnical engineering 
650 4 |a Engineering geology 
650 4 |a Engineering / Geology 
650 4 |a Foundations 
650 4 |a Hydraulics 
700 1 |a Mendecki, A. J.  |4 edt 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9789401071871 
856 4 0 |u https://doi.org/10.1007/978-94-009-1539-8  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-2-ENG 
940 1 |q ZDB-2-ENG_Archiv 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030576570 
966 e |u https://doi.org/10.1007/978-94-009-1539-8  |l DE-634  |p ZDB-2-ENG  |q ZDB-2-ENG_Archiv  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819303584155566080
any_adam_object
author2 Mendecki, A. J.
author2_role edt
author2_variant a j m aj ajm
author_facet Mendecki, A. J.
building Verbundindex
bvnumber BV045187392
collection ZDB-2-ENG
ctrlnum (ZDB-2-ENG)978-94-009-1539-8
(OCoLC)1053798350
(DE-599)BVBBV045187392
dewey-full 624.15
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 624 - Civil engineering
dewey-raw 624.15
dewey-search 624.15
dewey-sort 3624.15
dewey-tens 620 - Engineering and allied operations
discipline Bauingenieurwesen
doi_str_mv 10.1007/978-94-009-1539-8
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03101nam a2200493zc 4500</leader><controlfield tag="001">BV045187392</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1997 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400915398</subfield><subfield code="9">978-94-009-1539-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-009-1539-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-94-009-1539-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053798350</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045187392</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">624.15</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Seismic Monitoring in Mines</subfield><subfield code="c">edited by A. J. Mendecki</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 262 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Routine seismic monitoring in mines was introduced over 30 years ago with two main objectives in mind: • immediate location of larger seIsmIC events to guide rescue operations; • prediction of large rockmass instabilities. The first objective was achieved fairly quickly, but with the subsequent development of mine communication systems, its strategic importance has diminished. The very limited success with prediction can, at least partially, be attributed to three factors: • seismic monitoring systems based on analogue technology that provided noisy and, frequently, poorly calibrated data of limited dynamic range; • the non-quantitative description of a seismic event by at best its local magnitude; and • the resultant non-quantitative analysis of seismicity, frequently through parameters of some statistical distributions, with a somewhat loose but imaginative physical interpretation. The introduction of modern digital seismic systems to mines and progress in the theory and methods of quantitative seismology have enabled the implementation of realtime seismic monitoring as a management tool, quantifying rockmass response to mining and achieving the first tangible results with prediction. A seismic event, being a sudden inelastic deformation within the rockmass, can now routinely be quantified in terms of seismic moment, its tensor, and radiated seismic energy, so that the overall size of, and stress released at, the seismic source can be estimated</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geoengineering, Foundations, Hydraulics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geotechnical Engineering &amp; Applied Earth Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics/Geodesy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geotechnical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering geology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering / Geology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mendecki, A. J.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789401071871</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-009-1539-8</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030576570</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-009-1539-8</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV045187392
illustrated Not Illustrated
indexdate 2024-12-24T06:51:41Z
institution BVB
isbn 9789400915398
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030576570
oclc_num 1053798350
open_access_boolean
owner DE-634
owner_facet DE-634
physical 1 Online-Ressource (XIII, 262 p)
psigel ZDB-2-ENG
ZDB-2-ENG_Archiv
ZDB-2-ENG ZDB-2-ENG_Archiv
publishDate 1997
publishDateSearch 1997
publishDateSort 1997
publisher Springer Netherlands
record_format marc
spelling Seismic Monitoring in Mines edited by A. J. Mendecki
Dordrecht Springer Netherlands 1997
1 Online-Ressource (XIII, 262 p)
txt rdacontent
c rdamedia
cr rdacarrier
Routine seismic monitoring in mines was introduced over 30 years ago with two main objectives in mind: • immediate location of larger seIsmIC events to guide rescue operations; • prediction of large rockmass instabilities. The first objective was achieved fairly quickly, but with the subsequent development of mine communication systems, its strategic importance has diminished. The very limited success with prediction can, at least partially, be attributed to three factors: • seismic monitoring systems based on analogue technology that provided noisy and, frequently, poorly calibrated data of limited dynamic range; • the non-quantitative description of a seismic event by at best its local magnitude; and • the resultant non-quantitative analysis of seismicity, frequently through parameters of some statistical distributions, with a somewhat loose but imaginative physical interpretation. The introduction of modern digital seismic systems to mines and progress in the theory and methods of quantitative seismology have enabled the implementation of realtime seismic monitoring as a management tool, quantifying rockmass response to mining and achieving the first tangible results with prediction. A seismic event, being a sudden inelastic deformation within the rockmass, can now routinely be quantified in terms of seismic moment, its tensor, and radiated seismic energy, so that the overall size of, and stress released at, the seismic source can be estimated
Engineering
Geoengineering, Foundations, Hydraulics
Geotechnical Engineering & Applied Earth Sciences
Geophysics/Geodesy
Geophysics
Geotechnical engineering
Engineering geology
Engineering / Geology
Foundations
Hydraulics
Mendecki, A. J. edt
Erscheint auch als Druck-Ausgabe 9789401071871
https://doi.org/10.1007/978-94-009-1539-8 Verlag URL des Erstveröffentlichers Volltext
spellingShingle Seismic Monitoring in Mines
Engineering
Geoengineering, Foundations, Hydraulics
Geotechnical Engineering & Applied Earth Sciences
Geophysics/Geodesy
Geophysics
Geotechnical engineering
Engineering geology
Engineering / Geology
Foundations
Hydraulics
title Seismic Monitoring in Mines
title_auth Seismic Monitoring in Mines
title_exact_search Seismic Monitoring in Mines
title_full Seismic Monitoring in Mines edited by A. J. Mendecki
title_fullStr Seismic Monitoring in Mines edited by A. J. Mendecki
title_full_unstemmed Seismic Monitoring in Mines edited by A. J. Mendecki
title_short Seismic Monitoring in Mines
title_sort seismic monitoring in mines
topic Engineering
Geoengineering, Foundations, Hydraulics
Geotechnical Engineering & Applied Earth Sciences
Geophysics/Geodesy
Geophysics
Geotechnical engineering
Engineering geology
Engineering / Geology
Foundations
Hydraulics
topic_facet Engineering
Geoengineering, Foundations, Hydraulics
Geotechnical Engineering & Applied Earth Sciences
Geophysics/Geodesy
Geophysics
Geotechnical engineering
Engineering geology
Engineering / Geology
Foundations
Hydraulics
url https://doi.org/10.1007/978-94-009-1539-8
work_keys_str_mv AT mendeckiaj seismicmonitoringinmines