The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing

The growth in the field of digital signal processing began with the simulation of continuous-time systems in the 1950s, even though the origin of the field can be traced back to 400 years when methods were developed to solve numerically problems such as interpolation and integration. During the last...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bagchi, Sonali (VerfasserIn), Mitra, Sanjit K. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston, MA Springer US 1999
Schriftenreihe:The Springer International Series in Engineering and Computer Science 463
Schlagworte:
Online-Zugang:BTU01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV045186549
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 180912s1999 |||| o||u| ||||||eng d
020 |a 9781461549253  |9 978-1-4615-4925-3 
024 7 |a 10.1007/978-1-4615-4925-3  |2 doi 
035 |a (ZDB-2-ENG)978-1-4615-4925-3 
035 |a (OCoLC)1053825931 
035 |a (DE-599)BVBBV045186549 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-634 
082 0 |a 621.382  |2 23 
100 1 |a Bagchi, Sonali  |e Verfasser  |4 aut 
245 1 0 |a The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing  |c by Sonali Bagchi, Sanjit K. Mitra 
264 1 |a Boston, MA  |b Springer US  |c 1999 
300 |a 1 Online-Ressource (XIV, 208 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a The Springer International Series in Engineering and Computer Science  |v 463 
520 |a The growth in the field of digital signal processing began with the simulation of continuous-time systems in the 1950s, even though the origin of the field can be traced back to 400 years when methods were developed to solve numerically problems such as interpolation and integration. During the last 40 years, there have been phenomenal advances in the theory and application of digital signal processing. In many applications, the representation of a discrete-time signal or a sys­ tem in the frequency domain is of interest. To this end, the discrete-time Fourier transform (DTFT) and the z-transform are often used. In the case of a discrete-time signal of finite length, the most widely used frequency-domain representation is the discrete Fourier transform (DFT) which results in a finite­ length sequence in the frequency domain. The DFT is simply composed of the samples of the DTFT of the sequence at equally spaced frequency points, or equivalently, the samples of its z-transform at equally spaced points on the unit circle. The DFT provides information about the spectral contents of the signal at equally spaced discrete frequency points, and thus, can be used for spectral analysis of signals. Various techniques, commonly known as the fast Fourier transform (FFT) algorithms, have been advanced for the efficient com­ putation of the DFT. An important tool in digital signal processing is the linear convolution of two finite-length signals, which often can be implemented very efficiently using the DFT. 
650 4 |a Engineering 
650 4 |a Signal, Image and Speech Processing 
650 4 |a Electrical Engineering 
650 4 |a Engineering 
650 4 |a Electrical engineering 
650 0 7 |a Signalverarbeitung  |0 (DE-588)4054947-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Diskrete Fourier-Transformation  |0 (DE-588)4150175-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Diskrete Fourier-Transformation  |0 (DE-588)4150175-5  |D s 
689 0 1 |a Signalverarbeitung  |0 (DE-588)4054947-1  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Mitra, Sanjit K.  |4 aut 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781461372349 
856 4 0 |u https://doi.org/10.1007/978-1-4615-4925-3  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-2-ENG 
940 1 |q ZDB-2-ENG_Archiv 
999 |a oai:aleph.bib-bvb.de:BVB01-030575726 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
966 e |u https://doi.org/10.1007/978-1-4615-4925-3  |l BTU01  |p ZDB-2-ENG  |q ZDB-2-ENG_Archiv  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1804178877672587264
any_adam_object
author Bagchi, Sonali
Mitra, Sanjit K.
author_facet Bagchi, Sonali
Mitra, Sanjit K.
author_role aut
aut
author_sort Bagchi, Sonali
author_variant s b sb
s k m sk skm
building Verbundindex
bvnumber BV045186549
collection ZDB-2-ENG
ctrlnum (ZDB-2-ENG)978-1-4615-4925-3
(OCoLC)1053825931
(DE-599)BVBBV045186549
dewey-full 621.382
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 621 - Applied physics
dewey-raw 621.382
dewey-search 621.382
dewey-sort 3621.382
dewey-tens 620 - Engineering and allied operations
discipline Elektrotechnik / Elektronik / Nachrichtentechnik
doi_str_mv 10.1007/978-1-4615-4925-3
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03510nmm a2200517zcb4500</leader><controlfield tag="001">BV045186549</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461549253</subfield><subfield code="9">978-1-4615-4925-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-4925-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4615-4925-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053825931</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045186549</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.382</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bagchi, Sonali</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing</subfield><subfield code="c">by Sonali Bagchi, Sanjit K. Mitra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 208 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Springer International Series in Engineering and Computer Science</subfield><subfield code="v">463</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The growth in the field of digital signal processing began with the simulation of continuous-time systems in the 1950s, even though the origin of the field can be traced back to 400 years when methods were developed to solve numerically problems such as interpolation and integration. During the last 40 years, there have been phenomenal advances in the theory and application of digital signal processing. In many applications, the representation of a discrete-time signal or a sys­ tem in the frequency domain is of interest. To this end, the discrete-time Fourier transform (DTFT) and the z-transform are often used. In the case of a discrete-time signal of finite length, the most widely used frequency-domain representation is the discrete Fourier transform (DFT) which results in a finite­ length sequence in the frequency domain. The DFT is simply composed of the samples of the DTFT of the sequence at equally spaced frequency points, or equivalently, the samples of its z-transform at equally spaced points on the unit circle. The DFT provides information about the spectral contents of the signal at equally spaced discrete frequency points, and thus, can be used for spectral analysis of signals. Various techniques, commonly known as the fast Fourier transform (FFT) algorithms, have been advanced for the efficient com­ putation of the DFT. An important tool in digital signal processing is the linear convolution of two finite-length signals, which often can be implemented very efficiently using the DFT.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal, Image and Speech Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskrete Fourier-Transformation</subfield><subfield code="0">(DE-588)4150175-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diskrete Fourier-Transformation</subfield><subfield code="0">(DE-588)4150175-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mitra, Sanjit K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461372349</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-4925-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030575726</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-4925-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV045186549
illustrated Not Illustrated
indexdate 2024-07-10T08:10:57Z
institution BVB
isbn 9781461549253
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030575726
oclc_num 1053825931
open_access_boolean
owner DE-634
owner_facet DE-634
physical 1 Online-Ressource (XIV, 208 p)
psigel ZDB-2-ENG
ZDB-2-ENG_Archiv
ZDB-2-ENG ZDB-2-ENG_Archiv
publishDate 1999
publishDateSearch 1999
publishDateSort 1999
publisher Springer US
record_format marc
series2 The Springer International Series in Engineering and Computer Science
spelling Bagchi, Sonali Verfasser aut
The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing by Sonali Bagchi, Sanjit K. Mitra
Boston, MA Springer US 1999
1 Online-Ressource (XIV, 208 p)
txt rdacontent
c rdamedia
cr rdacarrier
The Springer International Series in Engineering and Computer Science 463
The growth in the field of digital signal processing began with the simulation of continuous-time systems in the 1950s, even though the origin of the field can be traced back to 400 years when methods were developed to solve numerically problems such as interpolation and integration. During the last 40 years, there have been phenomenal advances in the theory and application of digital signal processing. In many applications, the representation of a discrete-time signal or a sys­ tem in the frequency domain is of interest. To this end, the discrete-time Fourier transform (DTFT) and the z-transform are often used. In the case of a discrete-time signal of finite length, the most widely used frequency-domain representation is the discrete Fourier transform (DFT) which results in a finite­ length sequence in the frequency domain. The DFT is simply composed of the samples of the DTFT of the sequence at equally spaced frequency points, or equivalently, the samples of its z-transform at equally spaced points on the unit circle. The DFT provides information about the spectral contents of the signal at equally spaced discrete frequency points, and thus, can be used for spectral analysis of signals. Various techniques, commonly known as the fast Fourier transform (FFT) algorithms, have been advanced for the efficient com­ putation of the DFT. An important tool in digital signal processing is the linear convolution of two finite-length signals, which often can be implemented very efficiently using the DFT.
Engineering
Signal, Image and Speech Processing
Electrical Engineering
Electrical engineering
Signalverarbeitung (DE-588)4054947-1 gnd rswk-swf
Diskrete Fourier-Transformation (DE-588)4150175-5 gnd rswk-swf
Diskrete Fourier-Transformation (DE-588)4150175-5 s
Signalverarbeitung (DE-588)4054947-1 s
1\p DE-604
Mitra, Sanjit K. aut
Erscheint auch als Druck-Ausgabe 9781461372349
https://doi.org/10.1007/978-1-4615-4925-3 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Bagchi, Sonali
Mitra, Sanjit K.
The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing
Engineering
Signal, Image and Speech Processing
Electrical Engineering
Electrical engineering
Signalverarbeitung (DE-588)4054947-1 gnd
Diskrete Fourier-Transformation (DE-588)4150175-5 gnd
subject_GND (DE-588)4054947-1
(DE-588)4150175-5
title The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing
title_auth The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing
title_exact_search The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing
title_full The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing by Sonali Bagchi, Sanjit K. Mitra
title_fullStr The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing by Sonali Bagchi, Sanjit K. Mitra
title_full_unstemmed The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing by Sonali Bagchi, Sanjit K. Mitra
title_short The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing
title_sort the nonuniform discrete fourier transform and its applications in signal processing
topic Engineering
Signal, Image and Speech Processing
Electrical Engineering
Electrical engineering
Signalverarbeitung (DE-588)4054947-1 gnd
Diskrete Fourier-Transformation (DE-588)4150175-5 gnd
topic_facet Engineering
Signal, Image and Speech Processing
Electrical Engineering
Electrical engineering
Signalverarbeitung
Diskrete Fourier-Transformation
url https://doi.org/10.1007/978-1-4615-4925-3
work_keys_str_mv AT bagchisonali thenonuniformdiscretefouriertransformanditsapplicationsinsignalprocessing
AT mitrasanjitk thenonuniformdiscretefouriertransformanditsapplicationsinsignalprocessing