The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing
The growth in the field of digital signal processing began with the simulation of continuous-time systems in the 1950s, even though the origin of the field can be traced back to 400 years when methods were developed to solve numerically problems such as interpolation and integration. During the last...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1999
|
Schriftenreihe: | The Springer International Series in Engineering and Computer Science
463 |
Schlagworte: | |
Online-Zugang: | BTU01 URL des Erstveröffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045186549 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781461549253 |9 978-1-4615-4925-3 | ||
024 | 7 | |a 10.1007/978-1-4615-4925-3 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4615-4925-3 | ||
035 | |a (OCoLC)1053825931 | ||
035 | |a (DE-599)BVBBV045186549 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 621.382 |2 23 | |
100 | 1 | |a Bagchi, Sonali |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing |c by Sonali Bagchi, Sanjit K. Mitra |
264 | 1 | |a Boston, MA |b Springer US |c 1999 | |
300 | |a 1 Online-Ressource (XIV, 208 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The Springer International Series in Engineering and Computer Science |v 463 | |
520 | |a The growth in the field of digital signal processing began with the simulation of continuous-time systems in the 1950s, even though the origin of the field can be traced back to 400 years when methods were developed to solve numerically problems such as interpolation and integration. During the last 40 years, there have been phenomenal advances in the theory and application of digital signal processing. In many applications, the representation of a discrete-time signal or a sys tem in the frequency domain is of interest. To this end, the discrete-time Fourier transform (DTFT) and the z-transform are often used. In the case of a discrete-time signal of finite length, the most widely used frequency-domain representation is the discrete Fourier transform (DFT) which results in a finite length sequence in the frequency domain. The DFT is simply composed of the samples of the DTFT of the sequence at equally spaced frequency points, or equivalently, the samples of its z-transform at equally spaced points on the unit circle. The DFT provides information about the spectral contents of the signal at equally spaced discrete frequency points, and thus, can be used for spectral analysis of signals. Various techniques, commonly known as the fast Fourier transform (FFT) algorithms, have been advanced for the efficient com putation of the DFT. An important tool in digital signal processing is the linear convolution of two finite-length signals, which often can be implemented very efficiently using the DFT. | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Signal, Image and Speech Processing | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Engineering | |
650 | 4 | |a Electrical engineering | |
650 | 0 | 7 | |a Signalverarbeitung |0 (DE-588)4054947-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diskrete Fourier-Transformation |0 (DE-588)4150175-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Diskrete Fourier-Transformation |0 (DE-588)4150175-5 |D s |
689 | 0 | 1 | |a Signalverarbeitung |0 (DE-588)4054947-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Mitra, Sanjit K. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461372349 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-4925-3 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030575726 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4615-4925-3 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178877672587264 |
---|---|
any_adam_object | |
author | Bagchi, Sonali Mitra, Sanjit K. |
author_facet | Bagchi, Sonali Mitra, Sanjit K. |
author_role | aut aut |
author_sort | Bagchi, Sonali |
author_variant | s b sb s k m sk skm |
building | Verbundindex |
bvnumber | BV045186549 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4615-4925-3 (OCoLC)1053825931 (DE-599)BVBBV045186549 |
dewey-full | 621.382 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.382 |
dewey-search | 621.382 |
dewey-sort | 3621.382 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1007/978-1-4615-4925-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03510nmm a2200517zcb4500</leader><controlfield tag="001">BV045186549</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461549253</subfield><subfield code="9">978-1-4615-4925-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-4925-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4615-4925-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053825931</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045186549</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.382</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bagchi, Sonali</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing</subfield><subfield code="c">by Sonali Bagchi, Sanjit K. Mitra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 208 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Springer International Series in Engineering and Computer Science</subfield><subfield code="v">463</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The growth in the field of digital signal processing began with the simulation of continuous-time systems in the 1950s, even though the origin of the field can be traced back to 400 years when methods were developed to solve numerically problems such as interpolation and integration. During the last 40 years, there have been phenomenal advances in the theory and application of digital signal processing. In many applications, the representation of a discrete-time signal or a sys tem in the frequency domain is of interest. To this end, the discrete-time Fourier transform (DTFT) and the z-transform are often used. In the case of a discrete-time signal of finite length, the most widely used frequency-domain representation is the discrete Fourier transform (DFT) which results in a finite length sequence in the frequency domain. The DFT is simply composed of the samples of the DTFT of the sequence at equally spaced frequency points, or equivalently, the samples of its z-transform at equally spaced points on the unit circle. The DFT provides information about the spectral contents of the signal at equally spaced discrete frequency points, and thus, can be used for spectral analysis of signals. Various techniques, commonly known as the fast Fourier transform (FFT) algorithms, have been advanced for the efficient com putation of the DFT. An important tool in digital signal processing is the linear convolution of two finite-length signals, which often can be implemented very efficiently using the DFT.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal, Image and Speech Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskrete Fourier-Transformation</subfield><subfield code="0">(DE-588)4150175-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diskrete Fourier-Transformation</subfield><subfield code="0">(DE-588)4150175-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mitra, Sanjit K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461372349</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-4925-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030575726</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-4925-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045186549 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:57Z |
institution | BVB |
isbn | 9781461549253 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030575726 |
oclc_num | 1053825931 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XIV, 208 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer US |
record_format | marc |
series2 | The Springer International Series in Engineering and Computer Science |
spelling | Bagchi, Sonali Verfasser aut The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing by Sonali Bagchi, Sanjit K. Mitra Boston, MA Springer US 1999 1 Online-Ressource (XIV, 208 p) txt rdacontent c rdamedia cr rdacarrier The Springer International Series in Engineering and Computer Science 463 The growth in the field of digital signal processing began with the simulation of continuous-time systems in the 1950s, even though the origin of the field can be traced back to 400 years when methods were developed to solve numerically problems such as interpolation and integration. During the last 40 years, there have been phenomenal advances in the theory and application of digital signal processing. In many applications, the representation of a discrete-time signal or a sys tem in the frequency domain is of interest. To this end, the discrete-time Fourier transform (DTFT) and the z-transform are often used. In the case of a discrete-time signal of finite length, the most widely used frequency-domain representation is the discrete Fourier transform (DFT) which results in a finite length sequence in the frequency domain. The DFT is simply composed of the samples of the DTFT of the sequence at equally spaced frequency points, or equivalently, the samples of its z-transform at equally spaced points on the unit circle. The DFT provides information about the spectral contents of the signal at equally spaced discrete frequency points, and thus, can be used for spectral analysis of signals. Various techniques, commonly known as the fast Fourier transform (FFT) algorithms, have been advanced for the efficient com putation of the DFT. An important tool in digital signal processing is the linear convolution of two finite-length signals, which often can be implemented very efficiently using the DFT. Engineering Signal, Image and Speech Processing Electrical Engineering Electrical engineering Signalverarbeitung (DE-588)4054947-1 gnd rswk-swf Diskrete Fourier-Transformation (DE-588)4150175-5 gnd rswk-swf Diskrete Fourier-Transformation (DE-588)4150175-5 s Signalverarbeitung (DE-588)4054947-1 s 1\p DE-604 Mitra, Sanjit K. aut Erscheint auch als Druck-Ausgabe 9781461372349 https://doi.org/10.1007/978-1-4615-4925-3 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bagchi, Sonali Mitra, Sanjit K. The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing Engineering Signal, Image and Speech Processing Electrical Engineering Electrical engineering Signalverarbeitung (DE-588)4054947-1 gnd Diskrete Fourier-Transformation (DE-588)4150175-5 gnd |
subject_GND | (DE-588)4054947-1 (DE-588)4150175-5 |
title | The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing |
title_auth | The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing |
title_exact_search | The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing |
title_full | The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing by Sonali Bagchi, Sanjit K. Mitra |
title_fullStr | The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing by Sonali Bagchi, Sanjit K. Mitra |
title_full_unstemmed | The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing by Sonali Bagchi, Sanjit K. Mitra |
title_short | The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing |
title_sort | the nonuniform discrete fourier transform and its applications in signal processing |
topic | Engineering Signal, Image and Speech Processing Electrical Engineering Electrical engineering Signalverarbeitung (DE-588)4054947-1 gnd Diskrete Fourier-Transformation (DE-588)4150175-5 gnd |
topic_facet | Engineering Signal, Image and Speech Processing Electrical Engineering Electrical engineering Signalverarbeitung Diskrete Fourier-Transformation |
url | https://doi.org/10.1007/978-1-4615-4925-3 |
work_keys_str_mv | AT bagchisonali thenonuniformdiscretefouriertransformanditsapplicationsinsignalprocessing AT mitrasanjitk thenonuniformdiscretefouriertransformanditsapplicationsinsignalprocessing |