Value Distribution Theory for Meromorphic Maps

Value distribution theory studies the behavior of mermorphic maps. Let f: M - N be a merom orphic map between complex manifolds. A target family CI ~ (Ea1aEA of analytic subsets Ea of N is given where A is a connected. compact complex manifold. The behavior of the inverse 1 family ["'(CI)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Stoll, Wilhelm 1923-2010 (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Wiesbaden Vieweg+Teubner Verlag 1985
Schlagworte:
Online-Zugang:DE-634
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV045177477
003 DE-604
005 20191204
007 cr|uuu---uuuuu
008 180911s1985 xx o|||| 00||| eng d
020 |a 9783663052920  |9 978-3-663-05292-0 
024 7 |a 10.1007/978-3-663-05292-0  |2 doi 
035 |a (ZDB-2-EES)978-3-663-05292-0 
035 |a (OCoLC)864108423 
035 |a (DE-599)BVBBV045177477 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-634 
082 0 |a 910  |2 23 
100 1 |a Stoll, Wilhelm  |d 1923-2010  |e Verfasser  |0 (DE-588)1082553328  |4 aut 
245 1 0 |a Value Distribution Theory for Meromorphic Maps  |c by Wilhelm Stoll 
264 1 |a Wiesbaden  |b Vieweg+Teubner Verlag  |c 1985 
300 |a 1 Online-Ressource (XI, 347 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
520 |a Value distribution theory studies the behavior of mermorphic maps. Let f: M - N be a merom orphic map between complex manifolds. A target family CI ~ (Ea1aEA of analytic subsets Ea of N is given where A is a connected. compact complex manifold. The behavior of the inverse 1 family ["'(CI) = (f- {E )laEA is investigated. A substantial theory has been a created by many contributors. Usually the targets Ea stay fixed. However we can consider a finite set IJ of meromorphic maps g : M - A and study the incidence f{z) E Eg(z) for z E M and some g E IJ. Here we investigate this situation: M is a parabolic manifold of dimension m and N = lP n is the n-dimensional projective space. The family of hyperplanes in lP n is the target family parameterized by the dual projective space lP* We obtain a Nevanlinna theory consisting of several n First Main Theorems. Second Main Theorems and Defect Relations and extend recent work by B. Shiffman and by S. Mori. We use the Ahlfors-Weyl theory modified by the curvature method of Cowen and Griffiths. The Introduction consists of two parts. In Part A. we sketch the theory for fixed targets to provide background for those who are familar with complex analysis but are not acquainted with value distribution theory 
650 4 |a Geography 
650 4 |a Geography, general 
650 4 |a Geography 
650 0 7 |a Wertverteilungstheorie  |0 (DE-588)4137510-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Meromorphe Abbildung  |0 (DE-588)4778382-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Meromorphe Abbildung  |0 (DE-588)4778382-5  |D s 
689 0 1 |a Wertverteilungstheorie  |0 (DE-588)4137510-5  |D s 
689 0 |8 1\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9783663052944 
856 4 0 |u https://doi.org/10.1007/978-3-663-05292-0  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-2-EES 
940 1 |q ZDB-2-EES_Archiv 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030566707 
966 e |u https://doi.org/10.1007/978-3-663-05292-0  |l DE-634  |p ZDB-2-EES  |q ZDB-2-EES_Archiv  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819303574989963267
any_adam_object
author Stoll, Wilhelm 1923-2010
author_GND (DE-588)1082553328
author_facet Stoll, Wilhelm 1923-2010
author_role aut
author_sort Stoll, Wilhelm 1923-2010
author_variant w s ws
building Verbundindex
bvnumber BV045177477
collection ZDB-2-EES
ctrlnum (ZDB-2-EES)978-3-663-05292-0
(OCoLC)864108423
(DE-599)BVBBV045177477
dewey-full 910
dewey-hundreds 900 - History & geography
dewey-ones 910 - Geography and travel
dewey-raw 910
dewey-search 910
dewey-sort 3910
dewey-tens 910 - Geography and travel
discipline Geographie
doi_str_mv 10.1007/978-3-663-05292-0
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02979nam a2200469zc 4500</leader><controlfield tag="001">BV045177477</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191204 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180911s1985 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783663052920</subfield><subfield code="9">978-3-663-05292-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-663-05292-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-EES)978-3-663-05292-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864108423</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045177477</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">910</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stoll, Wilhelm</subfield><subfield code="d">1923-2010</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1082553328</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Value Distribution Theory for Meromorphic Maps</subfield><subfield code="c">by Wilhelm Stoll</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 347 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Value distribution theory studies the behavior of mermorphic maps. Let f: M - N be a merom orphic map between complex manifolds. A target family CI ~ (Ea1aEA of analytic subsets Ea of N is given where A is a connected. compact complex manifold. The behavior of the inverse 1 family ["'(CI) = (f- {E )laEA is investigated. A substantial theory has been a created by many contributors. Usually the targets Ea stay fixed. However we can consider a finite set IJ of meromorphic maps g : M - A and study the incidence f{z) E Eg(z) for z E M and some g E IJ. Here we investigate this situation: M is a parabolic manifold of dimension m and N = lP n is the n-dimensional projective space. The family of hyperplanes in lP n is the target family parameterized by the dual projective space lP* We obtain a Nevanlinna theory consisting of several n First Main Theorems. Second Main Theorems and Defect Relations and extend recent work by B. Shiffman and by S. Mori. We use the Ahlfors-Weyl theory modified by the curvature method of Cowen and Griffiths. The Introduction consists of two parts. In Part A. we sketch the theory for fixed targets to provide background for those who are familar with complex analysis but are not acquainted with value distribution theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geography, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geography</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wertverteilungstheorie</subfield><subfield code="0">(DE-588)4137510-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Meromorphe Abbildung</subfield><subfield code="0">(DE-588)4778382-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Meromorphe Abbildung</subfield><subfield code="0">(DE-588)4778382-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wertverteilungstheorie</subfield><subfield code="0">(DE-588)4137510-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783663052944</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-663-05292-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-EES</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-EES_Archiv</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030566707</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-663-05292-0</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-EES</subfield><subfield code="q">ZDB-2-EES_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV045177477
illustrated Not Illustrated
indexdate 2024-12-24T06:51:28Z
institution BVB
isbn 9783663052920
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030566707
oclc_num 864108423
open_access_boolean
owner DE-634
owner_facet DE-634
physical 1 Online-Ressource (XI, 347 p)
psigel ZDB-2-EES
ZDB-2-EES_Archiv
ZDB-2-EES ZDB-2-EES_Archiv
publishDate 1985
publishDateSearch 1985
publishDateSort 1985
publisher Vieweg+Teubner Verlag
record_format marc
spelling Stoll, Wilhelm 1923-2010 Verfasser (DE-588)1082553328 aut
Value Distribution Theory for Meromorphic Maps by Wilhelm Stoll
Wiesbaden Vieweg+Teubner Verlag 1985
1 Online-Ressource (XI, 347 p)
txt rdacontent
c rdamedia
cr rdacarrier
Value distribution theory studies the behavior of mermorphic maps. Let f: M - N be a merom orphic map between complex manifolds. A target family CI ~ (Ea1aEA of analytic subsets Ea of N is given where A is a connected. compact complex manifold. The behavior of the inverse 1 family ["'(CI) = (f- {E )laEA is investigated. A substantial theory has been a created by many contributors. Usually the targets Ea stay fixed. However we can consider a finite set IJ of meromorphic maps g : M - A and study the incidence f{z) E Eg(z) for z E M and some g E IJ. Here we investigate this situation: M is a parabolic manifold of dimension m and N = lP n is the n-dimensional projective space. The family of hyperplanes in lP n is the target family parameterized by the dual projective space lP* We obtain a Nevanlinna theory consisting of several n First Main Theorems. Second Main Theorems and Defect Relations and extend recent work by B. Shiffman and by S. Mori. We use the Ahlfors-Weyl theory modified by the curvature method of Cowen and Griffiths. The Introduction consists of two parts. In Part A. we sketch the theory for fixed targets to provide background for those who are familar with complex analysis but are not acquainted with value distribution theory
Geography
Geography, general
Wertverteilungstheorie (DE-588)4137510-5 gnd rswk-swf
Meromorphe Abbildung (DE-588)4778382-5 gnd rswk-swf
Meromorphe Abbildung (DE-588)4778382-5 s
Wertverteilungstheorie (DE-588)4137510-5 s
1\p DE-604
Erscheint auch als Druck-Ausgabe 9783663052944
https://doi.org/10.1007/978-3-663-05292-0 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Stoll, Wilhelm 1923-2010
Value Distribution Theory for Meromorphic Maps
Geography
Geography, general
Wertverteilungstheorie (DE-588)4137510-5 gnd
Meromorphe Abbildung (DE-588)4778382-5 gnd
subject_GND (DE-588)4137510-5
(DE-588)4778382-5
title Value Distribution Theory for Meromorphic Maps
title_auth Value Distribution Theory for Meromorphic Maps
title_exact_search Value Distribution Theory for Meromorphic Maps
title_full Value Distribution Theory for Meromorphic Maps by Wilhelm Stoll
title_fullStr Value Distribution Theory for Meromorphic Maps by Wilhelm Stoll
title_full_unstemmed Value Distribution Theory for Meromorphic Maps by Wilhelm Stoll
title_short Value Distribution Theory for Meromorphic Maps
title_sort value distribution theory for meromorphic maps
topic Geography
Geography, general
Wertverteilungstheorie (DE-588)4137510-5 gnd
Meromorphe Abbildung (DE-588)4778382-5 gnd
topic_facet Geography
Geography, general
Wertverteilungstheorie
Meromorphe Abbildung
url https://doi.org/10.1007/978-3-663-05292-0
work_keys_str_mv AT stollwilhelm valuedistributiontheoryformeromorphicmaps