New Developments in Singularity Theory

Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in mos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Siersma, D. (HerausgeberIn), Wall, C. T. C. (HerausgeberIn), Zakalyukin, V. (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 2001
Schriftenreihe:NATO Science Series, Series II: Mathematics, Physics and Chemistry 21
Schlagworte:
Online-Zugang:DE-703
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV045152318
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 180828s2001 xx o|||| 00||| eng d
020 |a 9789401008341  |9 978-94-010-0834-1 
024 7 |a 10.1007/978-94-010-0834-1  |2 doi 
035 |a (ZDB-2-CMS)978-94-010-0834-1 
035 |a (OCoLC)1050948379 
035 |a (DE-599)BVBBV045152318 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-703 
082 0 |a 515.94  |2 23 
245 1 0 |a New Developments in Singularity Theory  |c edited by D. Siersma, C. T. C. Wall, V. Zakalyukin 
246 1 3 |a Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 31 July-11 August 2000 
264 1 |a Dordrecht  |b Springer Netherlands  |c 2001 
300 |a 1 Online-Ressource (VIII, 472 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a NATO Science Series, Series II: Mathematics, Physics and Chemistry  |v 21 
520 |a Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps 
650 4 |a Mathematics 
650 4 |a Several Complex Variables and Analytic Spaces 
650 4 |a Global Analysis and Analysis on Manifolds 
650 4 |a Algebraic Geometry 
650 4 |a Manifolds and Cell Complexes (incl. Diff.Topology) 
650 4 |a Real Functions 
650 4 |a Mathematics 
650 4 |a Algebraic geometry 
650 4 |a Global analysis (Mathematics) 
650 4 |a Manifolds (Mathematics) 
650 4 |a Functions of real variables 
650 4 |a Functions of complex variables 
650 4 |a Complex manifolds 
650 0 7 |a Singularität  |g Mathematik  |0 (DE-588)4077459-4  |2 gnd  |9 rswk-swf 
655 7 |8 1\p  |0 (DE-588)1071861417  |a Konferenzschrift  |y 2000  |z Cambridge  |2 gnd-content 
689 0 0 |a Singularität  |g Mathematik  |0 (DE-588)4077459-4  |D s 
689 0 |8 2\p  |5 DE-604 
700 1 |a Siersma, D.  |4 edt 
700 1 |a Wall, C. T. C.  |4 edt 
700 1 |a Zakalyukin, V.  |4 edt 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780792369974 
856 4 0 |u https://doi.org/10.1007/978-94-010-0834-1  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-2-CMS 
940 1 |q ZDB-2-CMS_2000/2004 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030541986 
966 e |u https://doi.org/10.1007/978-94-010-0834-1  |l DE-703  |p ZDB-2-CMS  |q ZDB-2-CMS_2000/2004  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819303531539070976
any_adam_object
author2 Siersma, D.
Wall, C. T. C.
Zakalyukin, V.
author2_role edt
edt
edt
author2_variant d s ds
c t c w ctc ctcw
v z vz
author_facet Siersma, D.
Wall, C. T. C.
Zakalyukin, V.
building Verbundindex
bvnumber BV045152318
collection ZDB-2-CMS
ctrlnum (ZDB-2-CMS)978-94-010-0834-1
(OCoLC)1050948379
(DE-599)BVBBV045152318
dewey-full 515.94
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.94
dewey-search 515.94
dewey-sort 3515.94
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-94-010-0834-1
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03207nam a2200637zcb4500</leader><controlfield tag="001">BV045152318</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180828s2001 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401008341</subfield><subfield code="9">978-94-010-0834-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-010-0834-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-CMS)978-94-010-0834-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050948379</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045152318</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.94</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New Developments in Singularity Theory</subfield><subfield code="c">edited by D. Siersma, C. T. C. Wall, V. Zakalyukin</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 31 July-11 August 2000</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 472 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">NATO Science Series, Series II: Mathematics, Physics and Chemistry</subfield><subfield code="v">21</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Several Complex Variables and Analytic Spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of real variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2000</subfield><subfield code="z">Cambridge</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Siersma, D.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wall, C. T. C.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zakalyukin, V.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780792369974</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-010-0834-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-CMS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-CMS_2000/2004</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030541986</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-010-0834-1</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-CMS</subfield><subfield code="q">ZDB-2-CMS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
genre 1\p (DE-588)1071861417 Konferenzschrift 2000 Cambridge gnd-content
genre_facet Konferenzschrift 2000 Cambridge
id DE-604.BV045152318
illustrated Not Illustrated
indexdate 2024-12-24T06:50:50Z
institution BVB
isbn 9789401008341
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030541986
oclc_num 1050948379
open_access_boolean
owner DE-703
owner_facet DE-703
physical 1 Online-Ressource (VIII, 472 p)
psigel ZDB-2-CMS
ZDB-2-CMS_2000/2004
ZDB-2-CMS ZDB-2-CMS_2000/2004
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher Springer Netherlands
record_format marc
series2 NATO Science Series, Series II: Mathematics, Physics and Chemistry
spelling New Developments in Singularity Theory edited by D. Siersma, C. T. C. Wall, V. Zakalyukin
Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 31 July-11 August 2000
Dordrecht Springer Netherlands 2001
1 Online-Ressource (VIII, 472 p)
txt rdacontent
c rdamedia
cr rdacarrier
NATO Science Series, Series II: Mathematics, Physics and Chemistry 21
Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps
Mathematics
Several Complex Variables and Analytic Spaces
Global Analysis and Analysis on Manifolds
Algebraic Geometry
Manifolds and Cell Complexes (incl. Diff.Topology)
Real Functions
Algebraic geometry
Global analysis (Mathematics)
Manifolds (Mathematics)
Functions of real variables
Functions of complex variables
Complex manifolds
Singularität Mathematik (DE-588)4077459-4 gnd rswk-swf
1\p (DE-588)1071861417 Konferenzschrift 2000 Cambridge gnd-content
Singularität Mathematik (DE-588)4077459-4 s
2\p DE-604
Siersma, D. edt
Wall, C. T. C. edt
Zakalyukin, V. edt
Erscheint auch als Druck-Ausgabe 9780792369974
https://doi.org/10.1007/978-94-010-0834-1 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle New Developments in Singularity Theory
Mathematics
Several Complex Variables and Analytic Spaces
Global Analysis and Analysis on Manifolds
Algebraic Geometry
Manifolds and Cell Complexes (incl. Diff.Topology)
Real Functions
Algebraic geometry
Global analysis (Mathematics)
Manifolds (Mathematics)
Functions of real variables
Functions of complex variables
Complex manifolds
Singularität Mathematik (DE-588)4077459-4 gnd
subject_GND (DE-588)4077459-4
(DE-588)1071861417
title New Developments in Singularity Theory
title_alt Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 31 July-11 August 2000
title_auth New Developments in Singularity Theory
title_exact_search New Developments in Singularity Theory
title_full New Developments in Singularity Theory edited by D. Siersma, C. T. C. Wall, V. Zakalyukin
title_fullStr New Developments in Singularity Theory edited by D. Siersma, C. T. C. Wall, V. Zakalyukin
title_full_unstemmed New Developments in Singularity Theory edited by D. Siersma, C. T. C. Wall, V. Zakalyukin
title_short New Developments in Singularity Theory
title_sort new developments in singularity theory
topic Mathematics
Several Complex Variables and Analytic Spaces
Global Analysis and Analysis on Manifolds
Algebraic Geometry
Manifolds and Cell Complexes (incl. Diff.Topology)
Real Functions
Algebraic geometry
Global analysis (Mathematics)
Manifolds (Mathematics)
Functions of real variables
Functions of complex variables
Complex manifolds
Singularität Mathematik (DE-588)4077459-4 gnd
topic_facet Mathematics
Several Complex Variables and Analytic Spaces
Global Analysis and Analysis on Manifolds
Algebraic Geometry
Manifolds and Cell Complexes (incl. Diff.Topology)
Real Functions
Algebraic geometry
Global analysis (Mathematics)
Manifolds (Mathematics)
Functions of real variables
Functions of complex variables
Complex manifolds
Singularität Mathematik
Konferenzschrift 2000 Cambridge
url https://doi.org/10.1007/978-94-010-0834-1
work_keys_str_mv AT siersmad newdevelopmentsinsingularitytheory
AT wallctc newdevelopmentsinsingularitytheory
AT zakalyukinv newdevelopmentsinsingularitytheory
AT siersmad proceedingsofthenatoadvancedstudyinstitutecambridgeuk31july11august2000
AT wallctc proceedingsofthenatoadvancedstudyinstitutecambridgeuk31july11august2000
AT zakalyukinv proceedingsofthenatoadvancedstudyinstitutecambridgeuk31july11august2000