Phase Transitions and Self-Organization in Electronic and Molecular Networks

Advances in nanoscale science show that the properties of many materials are dominated by internal structures. In molecular cases, such as window glass and proteins, these internal structures obviously have a network character. However, in many partly disordered electronic materials, almost all atte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Thorpe, M. F. (HerausgeberIn), Phillips, J. C. (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston, MA Springer US 2001
Schriftenreihe:Fundamental Materials Research
Schlagworte:
Online-Zugang:UBT01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV045151696
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 180828s2001 |||| o||u| ||||||eng d
020 |a 9780306471131  |9 978-0-306-47113-1 
024 7 |a 10.1007/b113936  |2 doi 
035 |a (ZDB-2-CMS)978-0-306-47113-1 
035 |a (OCoLC)1050952415 
035 |a (DE-599)BVBBV045151696 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-703 
082 0 |a 541  |2 23 
084 |a UQ 8050  |0 (DE-625)146587:  |2 rvk 
245 1 0 |a Phase Transitions and Self-Organization in Electronic and Molecular Networks  |c edited by M. F. Thorpe, J. C. Phillips 
264 1 |a Boston, MA  |b Springer US  |c 2001 
300 |a 1 Online-Ressource (XI, 454 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Fundamental Materials Research 
520 |a Advances in nanoscale science show that the properties of many materials are dominated by internal structures. In molecular cases, such as window glass and proteins, these internal structures obviously have a network character. However, in many partly disordered electronic materials, almost all attempts at understanding are based on traditional continuum models. This workshop focuses first on the phase diagrams and phase transitions of materials known to be composed of molecular networks. These phase properties characteristically contain remarkable features, such as intermediate phases that lead to reversibility windows in glass transitions as functions of composition. These features arise as a result of self-organization of the internal structures of the intermediate phases. In the protein case, this self-organization is the basis for protein folding. The second focus is on partly disordered electronic materials whose phase properties exhibit the same remarkable features. In fact, the phenomenon of High Temperature Superconductivity, discovered by Bednorz and Mueller in 1986, and now the subject of 75,000 research papers, also arises from such an intermediate phase. More recently discovered electronic phenomena, such as giant magnetoresistance, also are made possible only by the existence of such special phases. This book gives an overview of the methods and results obtained so far by studying the characteristics and properties of nanoscale self-organized networks. It demonstrates the universality of the network approach over a range of disciplines, from protein folding to the newest electronic materials 
650 4 |a Chemistry 
650 4 |a Physical Chemistry 
650 4 |a Condensed Matter Physics 
650 4 |a Characterization and Evaluation of Materials 
650 4 |a Ceramics, Glass, Composites, Natural Methods 
650 4 |a Chemistry 
650 4 |a Physical chemistry 
650 4 |a Condensed matter 
650 4 |a Materials science 
650 0 7 |a Festkörpertheorie  |0 (DE-588)4154189-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Strukturelle Phasenumwandlung  |0 (DE-588)4183794-0  |2 gnd  |9 rswk-swf 
655 7 |8 1\p  |0 (DE-588)1071861417  |a Konferenzschrift  |2 gnd-content 
655 7 |8 2\p  |0 (DE-588)1071861417  |a Konferenzschrift  |y 2000  |z Cambridge  |2 gnd-content 
689 0 0 |a Festkörpertheorie  |0 (DE-588)4154189-3  |D s 
689 0 1 |a Strukturelle Phasenumwandlung  |0 (DE-588)4183794-0  |D s 
689 0 |8 3\p  |5 DE-604 
700 1 |a Thorpe, M. F.  |4 edt 
700 1 |a Phillips, J. C.  |4 edt 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780306465680 
856 4 0 |u https://doi.org/10.1007/b113936  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-2-CMS 
940 1 |q ZDB-2-CMS_2000/2004 
999 |a oai:aleph.bib-bvb.de:BVB01-030541364 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
966 e |u https://doi.org/10.1007/b113936  |l UBT01  |p ZDB-2-CMS  |q ZDB-2-CMS_2000/2004  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1804178823971864576
any_adam_object
author2 Thorpe, M. F.
Phillips, J. C.
author2_role edt
edt
author2_variant m f t mf mft
j c p jc jcp
author_facet Thorpe, M. F.
Phillips, J. C.
building Verbundindex
bvnumber BV045151696
classification_rvk UQ 8050
collection ZDB-2-CMS
ctrlnum (ZDB-2-CMS)978-0-306-47113-1
(OCoLC)1050952415
(DE-599)BVBBV045151696
dewey-full 541
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 541 - Physical chemistry
dewey-raw 541
dewey-search 541
dewey-sort 3541
dewey-tens 540 - Chemistry and allied sciences
discipline Chemie / Pharmazie
Physik
doi_str_mv 10.1007/b113936
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04067nmm a2200625zc 4500</leader><controlfield tag="001">BV045151696</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180828s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780306471131</subfield><subfield code="9">978-0-306-47113-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b113936</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-CMS)978-0-306-47113-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050952415</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045151696</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8050</subfield><subfield code="0">(DE-625)146587:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase Transitions and Self-Organization in Electronic and Molecular Networks</subfield><subfield code="c">edited by M. F. Thorpe, J. C. Phillips</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 454 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Fundamental Materials Research</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Advances in nanoscale science show that the properties of many materials are dominated by internal structures. In molecular cases, such as window glass and proteins, these internal structures obviously have a network character. However, in many partly disordered electronic materials, almost all attempts at understanding are based on traditional continuum models. This workshop focuses first on the phase diagrams and phase transitions of materials known to be composed of molecular networks. These phase properties characteristically contain remarkable features, such as intermediate phases that lead to reversibility windows in glass transitions as functions of composition. These features arise as a result of self-organization of the internal structures of the intermediate phases. In the protein case, this self-organization is the basis for protein folding. The second focus is on partly disordered electronic materials whose phase properties exhibit the same remarkable features. In fact, the phenomenon of High Temperature Superconductivity, discovered by Bednorz and Mueller in 1986, and now the subject of 75,000 research papers, also arises from such an intermediate phase. More recently discovered electronic phenomena, such as giant magnetoresistance, also are made possible only by the existence of such special phases. This book gives an overview of the methods and results obtained so far by studying the characteristics and properties of nanoscale self-organized networks. It demonstrates the universality of the network approach over a range of disciplines, from protein folding to the newest electronic materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensed Matter Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characterization and Evaluation of Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ceramics, Glass, Composites, Natural Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensed matter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials science</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörpertheorie</subfield><subfield code="0">(DE-588)4154189-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strukturelle Phasenumwandlung</subfield><subfield code="0">(DE-588)4183794-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2000</subfield><subfield code="z">Cambridge</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Festkörpertheorie</subfield><subfield code="0">(DE-588)4154189-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Strukturelle Phasenumwandlung</subfield><subfield code="0">(DE-588)4183794-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thorpe, M. F.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Phillips, J. C.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780306465680</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b113936</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-CMS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-CMS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030541364</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b113936</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-CMS</subfield><subfield code="q">ZDB-2-CMS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
genre 1\p (DE-588)1071861417 Konferenzschrift gnd-content
2\p (DE-588)1071861417 Konferenzschrift 2000 Cambridge gnd-content
genre_facet Konferenzschrift
Konferenzschrift 2000 Cambridge
id DE-604.BV045151696
illustrated Not Illustrated
indexdate 2024-07-10T08:10:06Z
institution BVB
isbn 9780306471131
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030541364
oclc_num 1050952415
open_access_boolean
owner DE-703
owner_facet DE-703
physical 1 Online-Ressource (XI, 454 p)
psigel ZDB-2-CMS
ZDB-2-CMS_2000/2004
ZDB-2-CMS ZDB-2-CMS_2000/2004
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher Springer US
record_format marc
series2 Fundamental Materials Research
spelling Phase Transitions and Self-Organization in Electronic and Molecular Networks edited by M. F. Thorpe, J. C. Phillips
Boston, MA Springer US 2001
1 Online-Ressource (XI, 454 p)
txt rdacontent
c rdamedia
cr rdacarrier
Fundamental Materials Research
Advances in nanoscale science show that the properties of many materials are dominated by internal structures. In molecular cases, such as window glass and proteins, these internal structures obviously have a network character. However, in many partly disordered electronic materials, almost all attempts at understanding are based on traditional continuum models. This workshop focuses first on the phase diagrams and phase transitions of materials known to be composed of molecular networks. These phase properties characteristically contain remarkable features, such as intermediate phases that lead to reversibility windows in glass transitions as functions of composition. These features arise as a result of self-organization of the internal structures of the intermediate phases. In the protein case, this self-organization is the basis for protein folding. The second focus is on partly disordered electronic materials whose phase properties exhibit the same remarkable features. In fact, the phenomenon of High Temperature Superconductivity, discovered by Bednorz and Mueller in 1986, and now the subject of 75,000 research papers, also arises from such an intermediate phase. More recently discovered electronic phenomena, such as giant magnetoresistance, also are made possible only by the existence of such special phases. This book gives an overview of the methods and results obtained so far by studying the characteristics and properties of nanoscale self-organized networks. It demonstrates the universality of the network approach over a range of disciplines, from protein folding to the newest electronic materials
Chemistry
Physical Chemistry
Condensed Matter Physics
Characterization and Evaluation of Materials
Ceramics, Glass, Composites, Natural Methods
Physical chemistry
Condensed matter
Materials science
Festkörpertheorie (DE-588)4154189-3 gnd rswk-swf
Strukturelle Phasenumwandlung (DE-588)4183794-0 gnd rswk-swf
1\p (DE-588)1071861417 Konferenzschrift gnd-content
2\p (DE-588)1071861417 Konferenzschrift 2000 Cambridge gnd-content
Festkörpertheorie (DE-588)4154189-3 s
Strukturelle Phasenumwandlung (DE-588)4183794-0 s
3\p DE-604
Thorpe, M. F. edt
Phillips, J. C. edt
Erscheint auch als Druck-Ausgabe 9780306465680
https://doi.org/10.1007/b113936 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Phase Transitions and Self-Organization in Electronic and Molecular Networks
Chemistry
Physical Chemistry
Condensed Matter Physics
Characterization and Evaluation of Materials
Ceramics, Glass, Composites, Natural Methods
Physical chemistry
Condensed matter
Materials science
Festkörpertheorie (DE-588)4154189-3 gnd
Strukturelle Phasenumwandlung (DE-588)4183794-0 gnd
subject_GND (DE-588)4154189-3
(DE-588)4183794-0
(DE-588)1071861417
title Phase Transitions and Self-Organization in Electronic and Molecular Networks
title_auth Phase Transitions and Self-Organization in Electronic and Molecular Networks
title_exact_search Phase Transitions and Self-Organization in Electronic and Molecular Networks
title_full Phase Transitions and Self-Organization in Electronic and Molecular Networks edited by M. F. Thorpe, J. C. Phillips
title_fullStr Phase Transitions and Self-Organization in Electronic and Molecular Networks edited by M. F. Thorpe, J. C. Phillips
title_full_unstemmed Phase Transitions and Self-Organization in Electronic and Molecular Networks edited by M. F. Thorpe, J. C. Phillips
title_short Phase Transitions and Self-Organization in Electronic and Molecular Networks
title_sort phase transitions and self organization in electronic and molecular networks
topic Chemistry
Physical Chemistry
Condensed Matter Physics
Characterization and Evaluation of Materials
Ceramics, Glass, Composites, Natural Methods
Physical chemistry
Condensed matter
Materials science
Festkörpertheorie (DE-588)4154189-3 gnd
Strukturelle Phasenumwandlung (DE-588)4183794-0 gnd
topic_facet Chemistry
Physical Chemistry
Condensed Matter Physics
Characterization and Evaluation of Materials
Ceramics, Glass, Composites, Natural Methods
Physical chemistry
Condensed matter
Materials science
Festkörpertheorie
Strukturelle Phasenumwandlung
Konferenzschrift
Konferenzschrift 2000 Cambridge
url https://doi.org/10.1007/b113936
work_keys_str_mv AT thorpemf phasetransitionsandselforganizationinelectronicandmolecularnetworks
AT phillipsjc phasetransitionsandselforganizationinelectronicandmolecularnetworks