Instance Selection and Construction for Data Mining

The ability to analyze and understand massive data sets lags far behind the ability to gather and store the data. To meet this challenge, knowledge discovery and data mining (KDD) is growing rapidly as an emerging field. However, no matter how powerful computers are now or will be in the future, KDD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Liu, Huan (HerausgeberIn), Motoda, Hiroshi (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston, MA Springer US 2001
Schriftenreihe:The Springer International Series in Engineering and Computer Science 608
Schlagworte:
Online-Zugang:FHI01
BTU01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV045149012
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 180827s2001 |||| o||u| ||||||eng d
020 |a 9781475733594  |9 978-1-4757-3359-4 
024 7 |a 10.1007/978-1-4757-3359-4  |2 doi 
035 |a (ZDB-2-ENG)978-1-4757-3359-4 
035 |a (OCoLC)1050939454 
035 |a (DE-599)BVBBV045149012 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-573  |a DE-634 
082 0 |a 005.74  |2 23 
245 1 0 |a Instance Selection and Construction for Data Mining  |c edited by Huan Liu, Hiroshi Motoda 
264 1 |a Boston, MA  |b Springer US  |c 2001 
300 |a 1 Online-Ressource (XXV, 416 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a The Springer International Series in Engineering and Computer Science  |v 608 
520 |a The ability to analyze and understand massive data sets lags far behind the ability to gather and store the data. To meet this challenge, knowledge discovery and data mining (KDD) is growing rapidly as an emerging field. However, no matter how powerful computers are now or will be in the future, KDD researchers and practitioners must consider how to manage ever-growing data which is, ironically, due to the extensive use of computers and ease of data collection with computers. Many different approaches have been used to address the data explosion issue, such as algorithm scale-up and data reduction. Instance, example, or tuple selection pertains to methods or algorithms that select or search for a representative portion of data that can fulfill a KDD task as if the whole data is used. Instance selection is directly related to data reduction and becomes increasingly important in many KDD applications due to the need for processing efficiency and/or storage efficiency.  
520 |a One of the major means of instance selection is sampling whereby a sample is selected for testing and analysis, and randomness is a key element in the process. Instance selection also covers methods that require search. Examples can be found in density estimation (finding the representative instances - data points - for a cluster); boundary hunting (finding the critical instances to form boundaries to differentiate data points of different classes); and data squashing (producing weighted new data with equivalent sufficient statistics). Other important issues related to instance selection extend to unwanted precision, focusing, concept drifts, noise/outlier removal, data smoothing, etc. Instance Selection and Construction for Data Mining brings researchers and practitioners together to report new developments and applications, to share hard-learned experiences in order to avoid similar pitfalls, and to shed light on the future development of instance selection.  
520 |a This volume serves as a comprehensive reference for graduate students, practitioners and researchers in KDD. 
650 4 |a Computer Science 
650 4 |a Data Structures, Cryptology and Information Theory 
650 4 |a Artificial Intelligence (incl. Robotics) 
650 4 |a Information Storage and Retrieval 
650 4 |a Statistics, general 
650 4 |a Computer science 
650 4 |a Data structures (Computer science) 
650 4 |a Information storage and retrieval 
650 4 |a Artificial intelligence 
650 4 |a Statistics 
700 1 |a Liu, Huan  |4 edt 
700 1 |a Motoda, Hiroshi  |4 edt 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781441948618 
856 4 0 |u https://doi.org/10.1007/978-1-4757-3359-4  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-2-ENG 
940 1 |q ZDB-2-ENG_2000/2004 
999 |a oai:aleph.bib-bvb.de:BVB01-030538711 
966 e |u https://doi.org/10.1007/978-1-4757-3359-4  |l FHI01  |p ZDB-2-ENG  |q ZDB-2-ENG_2000/2004  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4757-3359-4  |l BTU01  |p ZDB-2-ENG  |q ZDB-2-ENG_Archiv  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1804178819961061376
any_adam_object
author2 Liu, Huan
Motoda, Hiroshi
author2_role edt
edt
author2_variant h l hl
h m hm
author_facet Liu, Huan
Motoda, Hiroshi
building Verbundindex
bvnumber BV045149012
collection ZDB-2-ENG
ctrlnum (ZDB-2-ENG)978-1-4757-3359-4
(OCoLC)1050939454
(DE-599)BVBBV045149012
dewey-full 005.74
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 005 - Computer programming, programs, data, security
dewey-raw 005.74
dewey-search 005.74
dewey-sort 15.74
dewey-tens 000 - Computer science, information, general works
discipline Informatik
doi_str_mv 10.1007/978-1-4757-3359-4
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04025nmm a2200541zcb4500</leader><controlfield tag="001">BV045149012</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475733594</subfield><subfield code="9">978-1-4757-3359-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3359-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4757-3359-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050939454</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045149012</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.74</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Instance Selection and Construction for Data Mining</subfield><subfield code="c">edited by Huan Liu, Hiroshi Motoda</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXV, 416 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Springer International Series in Engineering and Computer Science</subfield><subfield code="v">608</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The ability to analyze and understand massive data sets lags far behind the ability to gather and store the data. To meet this challenge, knowledge discovery and data mining (KDD) is growing rapidly as an emerging field. However, no matter how powerful computers are now or will be in the future, KDD researchers and practitioners must consider how to manage ever-growing data which is, ironically, due to the extensive use of computers and ease of data collection with computers. Many different approaches have been used to address the data explosion issue, such as algorithm scale-up and data reduction. Instance, example, or tuple selection pertains to methods or algorithms that select or search for a representative portion of data that can fulfill a KDD task as if the whole data is used. Instance selection is directly related to data reduction and becomes increasingly important in many KDD applications due to the need for processing efficiency and/or storage efficiency. </subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">One of the major means of instance selection is sampling whereby a sample is selected for testing and analysis, and randomness is a key element in the process. Instance selection also covers methods that require search. Examples can be found in density estimation (finding the representative instances - data points - for a cluster); boundary hunting (finding the critical instances to form boundaries to differentiate data points of different classes); and data squashing (producing weighted new data with equivalent sufficient statistics). Other important issues related to instance selection extend to unwanted precision, focusing, concept drifts, noise/outlier removal, data smoothing, etc. Instance Selection and Construction for Data Mining brings researchers and practitioners together to report new developments and applications, to share hard-learned experiences in order to avoid similar pitfalls, and to shed light on the future development of instance selection. </subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This volume serves as a comprehensive reference for graduate students, practitioners and researchers in KDD.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Structures, Cryptology and Information Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information Storage and Retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data structures (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information storage and retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Huan</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Motoda, Hiroshi</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781441948618</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3359-4</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030538711</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4757-3359-4</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4757-3359-4</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV045149012
illustrated Not Illustrated
indexdate 2024-07-10T08:10:02Z
institution BVB
isbn 9781475733594
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030538711
oclc_num 1050939454
open_access_boolean
owner DE-573
DE-634
owner_facet DE-573
DE-634
physical 1 Online-Ressource (XXV, 416 p)
psigel ZDB-2-ENG
ZDB-2-ENG_2000/2004
ZDB-2-ENG ZDB-2-ENG_2000/2004
ZDB-2-ENG ZDB-2-ENG_Archiv
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher Springer US
record_format marc
series2 The Springer International Series in Engineering and Computer Science
spelling Instance Selection and Construction for Data Mining edited by Huan Liu, Hiroshi Motoda
Boston, MA Springer US 2001
1 Online-Ressource (XXV, 416 p)
txt rdacontent
c rdamedia
cr rdacarrier
The Springer International Series in Engineering and Computer Science 608
The ability to analyze and understand massive data sets lags far behind the ability to gather and store the data. To meet this challenge, knowledge discovery and data mining (KDD) is growing rapidly as an emerging field. However, no matter how powerful computers are now or will be in the future, KDD researchers and practitioners must consider how to manage ever-growing data which is, ironically, due to the extensive use of computers and ease of data collection with computers. Many different approaches have been used to address the data explosion issue, such as algorithm scale-up and data reduction. Instance, example, or tuple selection pertains to methods or algorithms that select or search for a representative portion of data that can fulfill a KDD task as if the whole data is used. Instance selection is directly related to data reduction and becomes increasingly important in many KDD applications due to the need for processing efficiency and/or storage efficiency.
One of the major means of instance selection is sampling whereby a sample is selected for testing and analysis, and randomness is a key element in the process. Instance selection also covers methods that require search. Examples can be found in density estimation (finding the representative instances - data points - for a cluster); boundary hunting (finding the critical instances to form boundaries to differentiate data points of different classes); and data squashing (producing weighted new data with equivalent sufficient statistics). Other important issues related to instance selection extend to unwanted precision, focusing, concept drifts, noise/outlier removal, data smoothing, etc. Instance Selection and Construction for Data Mining brings researchers and practitioners together to report new developments and applications, to share hard-learned experiences in order to avoid similar pitfalls, and to shed light on the future development of instance selection.
This volume serves as a comprehensive reference for graduate students, practitioners and researchers in KDD.
Computer Science
Data Structures, Cryptology and Information Theory
Artificial Intelligence (incl. Robotics)
Information Storage and Retrieval
Statistics, general
Computer science
Data structures (Computer science)
Information storage and retrieval
Artificial intelligence
Statistics
Liu, Huan edt
Motoda, Hiroshi edt
Erscheint auch als Druck-Ausgabe 9781441948618
https://doi.org/10.1007/978-1-4757-3359-4 Verlag URL des Erstveröffentlichers Volltext
spellingShingle Instance Selection and Construction for Data Mining
Computer Science
Data Structures, Cryptology and Information Theory
Artificial Intelligence (incl. Robotics)
Information Storage and Retrieval
Statistics, general
Computer science
Data structures (Computer science)
Information storage and retrieval
Artificial intelligence
Statistics
title Instance Selection and Construction for Data Mining
title_auth Instance Selection and Construction for Data Mining
title_exact_search Instance Selection and Construction for Data Mining
title_full Instance Selection and Construction for Data Mining edited by Huan Liu, Hiroshi Motoda
title_fullStr Instance Selection and Construction for Data Mining edited by Huan Liu, Hiroshi Motoda
title_full_unstemmed Instance Selection and Construction for Data Mining edited by Huan Liu, Hiroshi Motoda
title_short Instance Selection and Construction for Data Mining
title_sort instance selection and construction for data mining
topic Computer Science
Data Structures, Cryptology and Information Theory
Artificial Intelligence (incl. Robotics)
Information Storage and Retrieval
Statistics, general
Computer science
Data structures (Computer science)
Information storage and retrieval
Artificial intelligence
Statistics
topic_facet Computer Science
Data Structures, Cryptology and Information Theory
Artificial Intelligence (incl. Robotics)
Information Storage and Retrieval
Statistics, general
Computer science
Data structures (Computer science)
Information storage and retrieval
Artificial intelligence
Statistics
url https://doi.org/10.1007/978-1-4757-3359-4
work_keys_str_mv AT liuhuan instanceselectionandconstructionfordatamining
AT motodahiroshi instanceselectionandconstructionfordatamining