Fixed Interval Smoothing for State Space Models

Fixed-interval smoothing is a method of extracting useful information from inaccurate data. It has been applied to problems in engineering, the physical sciences, and the social sciences, in areas such as control, communications, signal processing, acoustics, geophysics, oceanography, statistics, ec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Weinert, Howard L. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston, MA Springer US 2001
Schriftenreihe:The Springer International Series in Engineering and Computer Science 609
Schlagworte:
Online-Zugang:DE-573
DE-634
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV045148939
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 180827s2001 xx o|||| 00||| eng d
020 |a 9781461516910  |9 978-1-4615-1691-0 
024 7 |a 10.1007/978-1-4615-1691-0  |2 doi 
035 |a (ZDB-2-ENG)978-1-4615-1691-0 
035 |a (OCoLC)1050935378 
035 |a (DE-599)BVBBV045148939 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-573  |a DE-634 
082 0 |a 621.3  |2 23 
100 1 |a Weinert, Howard L.  |e Verfasser  |4 aut 
245 1 0 |a Fixed Interval Smoothing for State Space Models  |c by Howard L. Weinert 
264 1 |a Boston, MA  |b Springer US  |c 2001 
300 |a 1 Online-Ressource (X, 119 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a The Springer International Series in Engineering and Computer Science  |v 609 
520 |a Fixed-interval smoothing is a method of extracting useful information from inaccurate data. It has been applied to problems in engineering, the physical sciences, and the social sciences, in areas such as control, communications, signal processing, acoustics, geophysics, oceanography, statistics, econometrics, and structural analysis. This monograph addresses problems for which a linear stochastic state space model is available, in which case the objective is to compute the linear least-squares estimate of the state vector in a fixed interval, using observations previously collected in that interval. The author uses a geometric approach based on the method of complementary models. Using the simplest possible notation, he presents straightforward derivations of the four types of fixed-interval smoothing algorithms, and compares the algorithms in terms of efficiency and applicability. Results show that the best algorithm has received the least attention in the literature. Fixed Interval Smoothing for State Space Models: includes new material on interpolation, fast square root implementations, and boundary value models; is the first book devoted to smoothing; contains an annotated bibliography of smoothing literature; uses simple notation and clear derivations; compares algorithms from a computational perspective; identifies a best algorithm. Fixed Interval Smoothing for State Space Models will be the primary source for those wanting to understand and apply fixed-interval smoothing: academics, researchers, and graduate students in control, communications, signal processing, statistics and econometrics 
650 4 |a Engineering 
650 4 |a Electrical Engineering 
650 4 |a Signal, Image and Speech Processing 
650 4 |a Statistics, general 
650 4 |a Engineering 
650 4 |a Statistics 
650 4 |a Electrical engineering 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781461356806 
856 4 0 |u https://doi.org/10.1007/978-1-4615-1691-0  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-2-ENG 
940 1 |q ZDB-2-ENG_2000/2004 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030538638 
966 e |u https://doi.org/10.1007/978-1-4615-1691-0  |l DE-573  |p ZDB-2-ENG  |q ZDB-2-ENG_2000/2004  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4615-1691-0  |l DE-634  |p ZDB-2-ENG  |q ZDB-2-ENG_Archiv  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819303525136465920
any_adam_object
author Weinert, Howard L.
author_facet Weinert, Howard L.
author_role aut
author_sort Weinert, Howard L.
author_variant h l w hl hlw
building Verbundindex
bvnumber BV045148939
collection ZDB-2-ENG
ctrlnum (ZDB-2-ENG)978-1-4615-1691-0
(OCoLC)1050935378
(DE-599)BVBBV045148939
dewey-full 621.3
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 621 - Applied physics
dewey-raw 621.3
dewey-search 621.3
dewey-sort 3621.3
dewey-tens 620 - Engineering and allied operations
discipline Elektrotechnik / Elektronik / Nachrichtentechnik
doi_str_mv 10.1007/978-1-4615-1691-0
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03321nam a2200469zcb4500</leader><controlfield tag="001">BV045148939</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2001 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461516910</subfield><subfield code="9">978-1-4615-1691-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-1691-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4615-1691-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050935378</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045148939</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weinert, Howard L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fixed Interval Smoothing for State Space Models</subfield><subfield code="c">by Howard L. Weinert</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 119 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Springer International Series in Engineering and Computer Science</subfield><subfield code="v">609</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fixed-interval smoothing is a method of extracting useful information from inaccurate data. It has been applied to problems in engineering, the physical sciences, and the social sciences, in areas such as control, communications, signal processing, acoustics, geophysics, oceanography, statistics, econometrics, and structural analysis. This monograph addresses problems for which a linear stochastic state space model is available, in which case the objective is to compute the linear least-squares estimate of the state vector in a fixed interval, using observations previously collected in that interval. The author uses a geometric approach based on the method of complementary models. Using the simplest possible notation, he presents straightforward derivations of the four types of fixed-interval smoothing algorithms, and compares the algorithms in terms of efficiency and applicability. Results show that the best algorithm has received the least attention in the literature. Fixed Interval Smoothing for State Space Models: includes new material on interpolation, fast square root implementations, and boundary value models; is the first book devoted to smoothing; contains an annotated bibliography of smoothing literature; uses simple notation and clear derivations; compares algorithms from a computational perspective; identifies a best algorithm. Fixed Interval Smoothing for State Space Models will be the primary source for those wanting to understand and apply fixed-interval smoothing: academics, researchers, and graduate students in control, communications, signal processing, statistics and econometrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal, Image and Speech Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical engineering</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461356806</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-1691-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030538638</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-1691-0</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-1691-0</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV045148939
illustrated Not Illustrated
indexdate 2024-12-24T06:50:45Z
institution BVB
isbn 9781461516910
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030538638
oclc_num 1050935378
open_access_boolean
owner DE-573
DE-634
owner_facet DE-573
DE-634
physical 1 Online-Ressource (X, 119 p)
psigel ZDB-2-ENG
ZDB-2-ENG_2000/2004
ZDB-2-ENG ZDB-2-ENG_2000/2004
ZDB-2-ENG ZDB-2-ENG_Archiv
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher Springer US
record_format marc
series2 The Springer International Series in Engineering and Computer Science
spelling Weinert, Howard L. Verfasser aut
Fixed Interval Smoothing for State Space Models by Howard L. Weinert
Boston, MA Springer US 2001
1 Online-Ressource (X, 119 p)
txt rdacontent
c rdamedia
cr rdacarrier
The Springer International Series in Engineering and Computer Science 609
Fixed-interval smoothing is a method of extracting useful information from inaccurate data. It has been applied to problems in engineering, the physical sciences, and the social sciences, in areas such as control, communications, signal processing, acoustics, geophysics, oceanography, statistics, econometrics, and structural analysis. This monograph addresses problems for which a linear stochastic state space model is available, in which case the objective is to compute the linear least-squares estimate of the state vector in a fixed interval, using observations previously collected in that interval. The author uses a geometric approach based on the method of complementary models. Using the simplest possible notation, he presents straightforward derivations of the four types of fixed-interval smoothing algorithms, and compares the algorithms in terms of efficiency and applicability. Results show that the best algorithm has received the least attention in the literature. Fixed Interval Smoothing for State Space Models: includes new material on interpolation, fast square root implementations, and boundary value models; is the first book devoted to smoothing; contains an annotated bibliography of smoothing literature; uses simple notation and clear derivations; compares algorithms from a computational perspective; identifies a best algorithm. Fixed Interval Smoothing for State Space Models will be the primary source for those wanting to understand and apply fixed-interval smoothing: academics, researchers, and graduate students in control, communications, signal processing, statistics and econometrics
Engineering
Electrical Engineering
Signal, Image and Speech Processing
Statistics, general
Statistics
Electrical engineering
Erscheint auch als Druck-Ausgabe 9781461356806
https://doi.org/10.1007/978-1-4615-1691-0 Verlag URL des Erstveröffentlichers Volltext
spellingShingle Weinert, Howard L.
Fixed Interval Smoothing for State Space Models
Engineering
Electrical Engineering
Signal, Image and Speech Processing
Statistics, general
Statistics
Electrical engineering
title Fixed Interval Smoothing for State Space Models
title_auth Fixed Interval Smoothing for State Space Models
title_exact_search Fixed Interval Smoothing for State Space Models
title_full Fixed Interval Smoothing for State Space Models by Howard L. Weinert
title_fullStr Fixed Interval Smoothing for State Space Models by Howard L. Weinert
title_full_unstemmed Fixed Interval Smoothing for State Space Models by Howard L. Weinert
title_short Fixed Interval Smoothing for State Space Models
title_sort fixed interval smoothing for state space models
topic Engineering
Electrical Engineering
Signal, Image and Speech Processing
Statistics, general
Statistics
Electrical engineering
topic_facet Engineering
Electrical Engineering
Signal, Image and Speech Processing
Statistics, general
Statistics
Electrical engineering
url https://doi.org/10.1007/978-1-4615-1691-0
work_keys_str_mv AT weinerthowardl fixedintervalsmoothingforstatespacemodels