Nonlinear elliptic partial differential equations an introduction

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Le Dret, Hervé (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cham, Switzerland Springer [2018]
Schriftenreihe:Universitext
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV045112559
003 DE-604
005 20200831
007 t
008 180801s2018 a||| |||| 00||| eng d
020 |a 9783319783895  |c pbk.  |9 978-3-319-78389-5 
035 |a (OCoLC)1047857306 
035 |a (DE-599)BVBBV045112559 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-11  |a DE-355  |a DE-188  |a DE-20  |a DE-83 
082 0 |a 515.353  |2 23 
084 |a SK 560  |0 (DE-625)143246:  |2 rvk 
084 |a SK 540  |0 (DE-625)143245:  |2 rvk 
084 |a 47Hxx  |2 msc 
084 |a 65Nxx  |2 msc 
084 |a 35Jxx  |2 msc 
100 1 |a Le Dret, Hervé  |e Verfasser  |0 (DE-588)1035525062  |4 aut 
240 1 0 |a Équations aux dérivées partielles elliptiques non linéaires 
245 1 0 |a Nonlinear elliptic partial differential equations  |b an introduction  |c Hervé Le Dret 
264 1 |a Cham, Switzerland  |b Springer  |c [2018] 
264 4 |c © 2018 
300 |a x, 253 Seiten  |b Illustrationen, Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Universitext  |x 0172-5939 
650 4 |a Mathematics 
650 4 |a Functional analysis 
650 4 |a Partial differential equations 
650 4 |a Calculus of variations 
650 4 |a Mathematics 
650 4 |a Partial Differential Equations 
650 4 |a Calculus of Variations and Optimal Control; Optimization 
650 4 |a Functional Analysis 
650 0 7 |a Nichtlineare elliptische Differentialgleichung  |0 (DE-588)4310554-3  |2 gnd  |9 rswk-swf 
689 0 0 |a Nichtlineare elliptische Differentialgleichung  |0 (DE-588)4310554-3  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-319-78390-1 
856 4 2 |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030502857&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-030502857 

Datensatz im Suchindex

_version_ 1804178755709566978
adam_text Contents 1 A Brief Review of Real and Functional Analysis....................... 1 LI A Little Topological Uniqueness Trick............................. 1 1.2 Integration Theory and the Lebesgue Convergence Theorems....... 2 1.3 Convolution and Mollification..................................... 6 1.4 Distribution Theory.............................................. 10 1.5 Holder and Sobolev Spaces........................................ 12 1.6 Duality and Weak Convergences in Sobolev Spaces.................. 18 1.7 The Weak and Weak-Star Topologies................................ 21 1.8 Variational Formulations and Their Interpretation................ 26 1.9 Some Spectral Theory............................................. 30 Appendix: The Topologies of $ and ................................. 32 2 Fixed Point Theorems and Applications.................................. 47 2.1 Brouwer’s Fixed Point Theorem.................................... 47 2.2 The Schauder Fixed Point Theorems................................ 56 2.3 Solving a Model Problem Using a Fixed Point Method............... 62 2.4 Exercises of Chap. 2 ............................................ 67 3 Superposition Operators................................................ 69 3.1 Superposition Operators in LP(Q.)................................ 69 3.2 Young Measures................................................... 73 3.3 Superposition Operators in W1,p(£2) ........................... 78 3.4 Superposition Operators and Boundary Trace..................... 89 3.5 Exercises of Chap. 3 ........................................... 90 4 The Galerkin Method ................................................... 93 4.1 Solving the Model Problem by the Galerkin Method................. 93 4.2 A Problem Reminiscent of Fluid Mechanics......................... 97 4.3 Exercises of Chap. 4 ........................................... 109 5 The Maximum Principle, Elliptic Regularity, and Applications......... Ill 5.1 The Strong Maximum Principle.................................... Ill 5.2 The Weak Maximum Principle...................................... 120 IX X Contents 5.3 Elliptic Regularity Results...................................... 122 5.4 The Method of Super- and Sub-Solutions........................... 131 5.5 Exercises of Chap. 5 ............................................ 136 6 Calculus of Variations and Quasilinear Problems...................... 141 6.1 Lower Semicontinuity and Convexity............................. 142 6.2 Application to Scalar Quasilinear Elliptic Boundary Value Problems................................................... 145 6.3 Calculus of Variations in the Vectorial Case, Quasiconvexity.... 150 6.4 Quasiconvexity: A Necessary Condition and a Sufficient Condition........................................................ 155 6.5 Exercises of Chap. 6........................................... 160 Appendix: Weak Lower Semicontinuity Proofs.......................... 165 7 Calculus of Variations and Critical Points........................... 179 7.1 Why Look for Critical Points? ................................... 179 7.2 Ekeland’s Variational Principle.................................. 182 7.3 The Palais-Smale Condition....................................... 188 7.4 The Deformation Lemma.......................................... 194 7.5 The Min-Max Principle and the Mountain Pass Lemma................ 200 7.6 Exercises of Chap. 7 ........................................ 211 8 Monotone Operators and Variational Inequalities....................... 215 8.1 Monotone Operators, Definitions and First Properties ............ 215 8.2 Examples of Monotone Operators................................. 217 8.3 Variational Inequalities......................................... 219 8.4 Examples of Variational Inequalities............................. 226 8.5 Pseudo-Monotone Operators........................................ 231 8.6 Leray-Lions Operators............................................ 236 8.7 Exercises of Chap. 8 ............................................ 240 References................................................................ 245 Index 249
any_adam_object 1
author Le Dret, Hervé
author_GND (DE-588)1035525062
author_facet Le Dret, Hervé
author_role aut
author_sort Le Dret, Hervé
author_variant d h l dh dhl
building Verbundindex
bvnumber BV045112559
classification_rvk SK 560
SK 540
ctrlnum (OCoLC)1047857306
(DE-599)BVBBV045112559
dewey-full 515.353
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.353
dewey-search 515.353
dewey-sort 3515.353
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02055nam a2200517 c 4500</leader><controlfield tag="001">BV045112559</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200831 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180801s2018 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319783895</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-3-319-78389-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1047857306</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045112559</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">47Hxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65Nxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35Jxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Le Dret, Hervé</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1035525062</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Équations aux dérivées partielles elliptiques non linéaires</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear elliptic partial differential equations</subfield><subfield code="b">an introduction</subfield><subfield code="c">Hervé Le Dret</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 253 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4310554-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4310554-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-319-78390-1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=030502857&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030502857</subfield></datafield></record></collection>
id DE-604.BV045112559
illustrated Illustrated
indexdate 2024-07-10T08:09:01Z
institution BVB
isbn 9783319783895
issn 0172-5939
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030502857
oclc_num 1047857306
open_access_boolean
owner DE-11
DE-355
DE-BY-UBR
DE-188
DE-20
DE-83
owner_facet DE-11
DE-355
DE-BY-UBR
DE-188
DE-20
DE-83
physical x, 253 Seiten Illustrationen, Diagramme
publishDate 2018
publishDateSearch 2018
publishDateSort 2018
publisher Springer
record_format marc
series2 Universitext
spelling Le Dret, Hervé Verfasser (DE-588)1035525062 aut
Équations aux dérivées partielles elliptiques non linéaires
Nonlinear elliptic partial differential equations an introduction Hervé Le Dret
Cham, Switzerland Springer [2018]
© 2018
x, 253 Seiten Illustrationen, Diagramme
txt rdacontent
n rdamedia
nc rdacarrier
Universitext 0172-5939
Mathematics
Functional analysis
Partial differential equations
Calculus of variations
Partial Differential Equations
Calculus of Variations and Optimal Control; Optimization
Functional Analysis
Nichtlineare elliptische Differentialgleichung (DE-588)4310554-3 gnd rswk-swf
Nichtlineare elliptische Differentialgleichung (DE-588)4310554-3 s
DE-604
Erscheint auch als Online-Ausgabe 978-3-319-78390-1
Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030502857&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Le Dret, Hervé
Nonlinear elliptic partial differential equations an introduction
Mathematics
Functional analysis
Partial differential equations
Calculus of variations
Partial Differential Equations
Calculus of Variations and Optimal Control; Optimization
Functional Analysis
Nichtlineare elliptische Differentialgleichung (DE-588)4310554-3 gnd
subject_GND (DE-588)4310554-3
title Nonlinear elliptic partial differential equations an introduction
title_alt Équations aux dérivées partielles elliptiques non linéaires
title_auth Nonlinear elliptic partial differential equations an introduction
title_exact_search Nonlinear elliptic partial differential equations an introduction
title_full Nonlinear elliptic partial differential equations an introduction Hervé Le Dret
title_fullStr Nonlinear elliptic partial differential equations an introduction Hervé Le Dret
title_full_unstemmed Nonlinear elliptic partial differential equations an introduction Hervé Le Dret
title_short Nonlinear elliptic partial differential equations
title_sort nonlinear elliptic partial differential equations an introduction
title_sub an introduction
topic Mathematics
Functional analysis
Partial differential equations
Calculus of variations
Partial Differential Equations
Calculus of Variations and Optimal Control; Optimization
Functional Analysis
Nichtlineare elliptische Differentialgleichung (DE-588)4310554-3 gnd
topic_facet Mathematics
Functional analysis
Partial differential equations
Calculus of variations
Partial Differential Equations
Calculus of Variations and Optimal Control; Optimization
Functional Analysis
Nichtlineare elliptische Differentialgleichung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030502857&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT ledretherve equationsauxderiveespartielleselliptiquesnonlineaires
AT ledretherve nonlinearellipticpartialdifferentialequationsanintroduction