Nonlinear elliptic partial differential equations an introduction
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2018]
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045112559 | ||
003 | DE-604 | ||
005 | 20200831 | ||
007 | t | ||
008 | 180801s2018 a||| |||| 00||| eng d | ||
020 | |a 9783319783895 |c pbk. |9 978-3-319-78389-5 | ||
035 | |a (OCoLC)1047857306 | ||
035 | |a (DE-599)BVBBV045112559 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-355 |a DE-188 |a DE-20 |a DE-83 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a 47Hxx |2 msc | ||
084 | |a 65Nxx |2 msc | ||
084 | |a 35Jxx |2 msc | ||
100 | 1 | |a Le Dret, Hervé |e Verfasser |0 (DE-588)1035525062 |4 aut | |
240 | 1 | 0 | |a Équations aux dérivées partielles elliptiques non linéaires |
245 | 1 | 0 | |a Nonlinear elliptic partial differential equations |b an introduction |c Hervé Le Dret |
264 | 1 | |a Cham, Switzerland |b Springer |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a x, 253 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Partial differential equations | |
650 | 4 | |a Calculus of variations | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Functional Analysis | |
650 | 0 | 7 | |a Nichtlineare elliptische Differentialgleichung |0 (DE-588)4310554-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare elliptische Differentialgleichung |0 (DE-588)4310554-3 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-319-78390-1 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030502857&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030502857 |
Datensatz im Suchindex
_version_ | 1804178755709566978 |
---|---|
adam_text | Contents
1 A Brief Review of Real and Functional Analysis....................... 1
LI A Little Topological Uniqueness Trick............................. 1
1.2 Integration Theory and the Lebesgue Convergence Theorems....... 2
1.3 Convolution and Mollification..................................... 6
1.4 Distribution Theory.............................................. 10
1.5 Holder and Sobolev Spaces........................................ 12
1.6 Duality and Weak Convergences in Sobolev Spaces.................. 18
1.7 The Weak and Weak-Star Topologies................................ 21
1.8 Variational Formulations and Their Interpretation................ 26
1.9 Some Spectral Theory............................................. 30
Appendix: The Topologies of $ and ................................. 32
2 Fixed Point Theorems and Applications.................................. 47
2.1 Brouwer’s Fixed Point Theorem.................................... 47
2.2 The Schauder Fixed Point Theorems................................ 56
2.3 Solving a Model Problem Using a Fixed Point Method............... 62
2.4 Exercises of Chap. 2 ............................................ 67
3 Superposition Operators................................................ 69
3.1 Superposition Operators in LP(Q.)................................ 69
3.2 Young Measures................................................... 73
3.3 Superposition Operators in W1,p(£2) ........................... 78
3.4 Superposition Operators and Boundary Trace..................... 89
3.5 Exercises of Chap. 3 ........................................... 90
4 The Galerkin Method ................................................... 93
4.1 Solving the Model Problem by the Galerkin Method................. 93
4.2 A Problem Reminiscent of Fluid Mechanics......................... 97
4.3 Exercises of Chap. 4 ........................................... 109
5 The Maximum Principle, Elliptic Regularity, and Applications......... Ill
5.1 The Strong Maximum Principle.................................... Ill
5.2 The Weak Maximum Principle...................................... 120
IX
X
Contents
5.3 Elliptic Regularity Results...................................... 122
5.4 The Method of Super- and Sub-Solutions........................... 131
5.5 Exercises of Chap. 5 ............................................ 136
6 Calculus of Variations and Quasilinear Problems...................... 141
6.1 Lower Semicontinuity and Convexity............................. 142
6.2 Application to Scalar Quasilinear Elliptic Boundary
Value Problems................................................... 145
6.3 Calculus of Variations in the Vectorial Case, Quasiconvexity.... 150
6.4 Quasiconvexity: A Necessary Condition and a Sufficient
Condition........................................................ 155
6.5 Exercises of Chap. 6........................................... 160
Appendix: Weak Lower Semicontinuity Proofs.......................... 165
7 Calculus of Variations and Critical Points........................... 179
7.1 Why Look for Critical Points? ................................... 179
7.2 Ekeland’s Variational Principle.................................. 182
7.3 The Palais-Smale Condition....................................... 188
7.4 The Deformation Lemma.......................................... 194
7.5 The Min-Max Principle and the Mountain Pass Lemma................ 200
7.6 Exercises of Chap. 7 ........................................ 211
8 Monotone Operators and Variational Inequalities....................... 215
8.1 Monotone Operators, Definitions and First Properties ............ 215
8.2 Examples of Monotone Operators................................. 217
8.3 Variational Inequalities......................................... 219
8.4 Examples of Variational Inequalities............................. 226
8.5 Pseudo-Monotone Operators........................................ 231
8.6 Leray-Lions Operators............................................ 236
8.7 Exercises of Chap. 8 ............................................ 240
References................................................................ 245
Index
249
|
any_adam_object | 1 |
author | Le Dret, Hervé |
author_GND | (DE-588)1035525062 |
author_facet | Le Dret, Hervé |
author_role | aut |
author_sort | Le Dret, Hervé |
author_variant | d h l dh dhl |
building | Verbundindex |
bvnumber | BV045112559 |
classification_rvk | SK 560 SK 540 |
ctrlnum | (OCoLC)1047857306 (DE-599)BVBBV045112559 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02055nam a2200517 c 4500</leader><controlfield tag="001">BV045112559</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200831 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180801s2018 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319783895</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-3-319-78389-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1047857306</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045112559</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">47Hxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65Nxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35Jxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Le Dret, Hervé</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1035525062</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Équations aux dérivées partielles elliptiques non linéaires</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear elliptic partial differential equations</subfield><subfield code="b">an introduction</subfield><subfield code="c">Hervé Le Dret</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 253 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4310554-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4310554-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-319-78390-1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030502857&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030502857</subfield></datafield></record></collection> |
id | DE-604.BV045112559 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:09:01Z |
institution | BVB |
isbn | 9783319783895 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030502857 |
oclc_num | 1047857306 |
open_access_boolean | |
owner | DE-11 DE-355 DE-BY-UBR DE-188 DE-20 DE-83 |
owner_facet | DE-11 DE-355 DE-BY-UBR DE-188 DE-20 DE-83 |
physical | x, 253 Seiten Illustrationen, Diagramme |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spelling | Le Dret, Hervé Verfasser (DE-588)1035525062 aut Équations aux dérivées partielles elliptiques non linéaires Nonlinear elliptic partial differential equations an introduction Hervé Le Dret Cham, Switzerland Springer [2018] © 2018 x, 253 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Universitext 0172-5939 Mathematics Functional analysis Partial differential equations Calculus of variations Partial Differential Equations Calculus of Variations and Optimal Control; Optimization Functional Analysis Nichtlineare elliptische Differentialgleichung (DE-588)4310554-3 gnd rswk-swf Nichtlineare elliptische Differentialgleichung (DE-588)4310554-3 s DE-604 Erscheint auch als Online-Ausgabe 978-3-319-78390-1 Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030502857&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Le Dret, Hervé Nonlinear elliptic partial differential equations an introduction Mathematics Functional analysis Partial differential equations Calculus of variations Partial Differential Equations Calculus of Variations and Optimal Control; Optimization Functional Analysis Nichtlineare elliptische Differentialgleichung (DE-588)4310554-3 gnd |
subject_GND | (DE-588)4310554-3 |
title | Nonlinear elliptic partial differential equations an introduction |
title_alt | Équations aux dérivées partielles elliptiques non linéaires |
title_auth | Nonlinear elliptic partial differential equations an introduction |
title_exact_search | Nonlinear elliptic partial differential equations an introduction |
title_full | Nonlinear elliptic partial differential equations an introduction Hervé Le Dret |
title_fullStr | Nonlinear elliptic partial differential equations an introduction Hervé Le Dret |
title_full_unstemmed | Nonlinear elliptic partial differential equations an introduction Hervé Le Dret |
title_short | Nonlinear elliptic partial differential equations |
title_sort | nonlinear elliptic partial differential equations an introduction |
title_sub | an introduction |
topic | Mathematics Functional analysis Partial differential equations Calculus of variations Partial Differential Equations Calculus of Variations and Optimal Control; Optimization Functional Analysis Nichtlineare elliptische Differentialgleichung (DE-588)4310554-3 gnd |
topic_facet | Mathematics Functional analysis Partial differential equations Calculus of variations Partial Differential Equations Calculus of Variations and Optimal Control; Optimization Functional Analysis Nichtlineare elliptische Differentialgleichung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030502857&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ledretherve equationsauxderiveespartielleselliptiquesnonlineaires AT ledretherve nonlinearellipticpartialdifferentialequationsanintroduction |