Advanced data analytics using Python with machine learning, deep learning and NLP examples

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mukhopadhyay, Sayan (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York, NY Apress [2018]
Schlagworte:
Online-Zugang:Inhaltstext
http://www.springer.com/
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV044998052
003 DE-604
005 20180806
007 t
008 180607s2018 xxuc||| |||| 00||| eng d
016 7 |a 114831492X  |2 DE-101 
020 |a 9781484234495  |c pbk.  |9 978-1-4842-3449-5 
020 |a 1484234499  |9 1-4842-3449-9 
035 |a (OCoLC)1042883813 
035 |a (DE-599)DNB114831492X 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a xxu  |c XD-US 
049 |a DE-739  |a DE-11 
084 |a ST 250  |0 (DE-625)143626:  |2 rvk 
084 |a ST 530  |0 (DE-625)143679:  |2 rvk 
100 1 |a Mukhopadhyay, Sayan  |e Verfasser  |0 (DE-588)115695861X  |4 aut 
245 1 0 |a Advanced data analytics using Python  |b with machine learning, deep learning and NLP examples  |c Sayan Mukhopadhyay 
264 1 |a New York, NY  |b Apress  |c [2018] 
264 4 |c © 2018 
300 |a xv, 186 Seiten  |b Diagramme, Portraits 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Python  |g Programmiersprache  |0 (DE-588)4434275-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Big Data  |0 (DE-588)4802620-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Datenanalyse  |0 (DE-588)4123037-1  |2 gnd  |9 rswk-swf 
653 |a Python 
653 |a Analytics 
653 |a Hadoop 
653 |a Storm 
653 |a Apache Spark 
653 |a Machine Learning 
653 |a Deep Learning 
653 |a Neo4j 
653 |a Time Series 
653 |a Elastic Search 
653 |a Python 
653 |a Big Data 
653 |a Open Source 
689 0 0 |a Big Data  |0 (DE-588)4802620-7  |D s 
689 0 1 |a Datenanalyse  |0 (DE-588)4123037-1  |D s 
689 0 2 |a Python  |g Programmiersprache  |0 (DE-588)4434275-5  |D s 
689 0 |5 DE-604 
710 2 |a Apress L.P.  |0 (DE-588)1065538766  |4 pbl 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-1-4842-3450-1 
856 4 2 |m X:MVB  |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=e44d54469749482398a8b03e0cdce009&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m X:MVB  |u http://www.springer.com/ 
856 4 2 |m Digitalisierung UB Passau - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030390259&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-030390259 

Datensatz im Suchindex

_version_ 1804178600698576896
adam_text Table of Contents About the Author............................................................ xi About the Technical Reviewer.................................................xiii Acknowledgments....................................................... xv Chapter 1: Introduction.......................................................1 Why Python?............................................................ 1 When to Avoid Using Python..................................................2 OOP in Python................................................... ...........3 Calling Other Languages in Python...............................................12 Exposing the Python Model as a Microservice.................................14 High-Performance API and Concurrent Programming.................. .........17 Chapter 2: ETL with Python (Structured Data)..................................23 MySQL..................................................................... 23 How to Install MySQLdb?............................. .................23 Database Connection............................................... 24 INSERT Operation............................................ ..........24 READ Operation................................... .....................25 DELETE Operation................................................ 26 UPDATE Operation.............................................. ......¿.27 COMMIT Operation............................................ .........28 ROLL-BACK Operation................................................. 28 v TABLE OF CONTENTS Elasticsearch..............................................................31 Connection Layer API....................................................33 Neo4j Python Driver........................................................34 neo4j-rest-client..........................................................35 In-Memory Database..........................................................35 MongoDB (Python Edition)....................................................36 Import Data into the Collection.........................................36 Create a Connection Using pymongo.......................................37 Access Database Objects.................................................37 Insert Data.............................................................38 Update Data.............................................................38 Remove Data.............................................................38 Pandas.....................................................................38 ETL with Python (Unstructured Data).........................................40 E-mail Parsing..........................................................40 Topical Crawling..................................................... 42 Chapter 3: Supervised Learning Using Python................................. 49 Dimensionality Reduction with Python........................................49 Correlation Analysis....................................................50 Principal Component Analysis............................................53 Mutual Information......................................................56 Classifications with Python.................................................57 Semisupervised Learning.....................................................58 Decision Tree...............................................................59 Which Attribute Comes First?.......................................... 59 Random Forest Classifier............................................ 60 vi TABLE OF CONTENTS Naive Bayes Classifier................................................................61 Support Vector Machine..................................................................... .........62 Nearest Neighbor Classifier.............................................. ..........................64 Sentiment Analysis................................................................................ 65 Image Recognition....................................................................... ..........67 Regression with Python................................................................................67 Least Square Estimation......................................................................... 68 Logistic Regression..................................................................................69 Classification and Regression.........................................................................70 Intentionally Bias the Model to Over-Fit or Under-Fit...................................................71 Dealing with Categorical Data............................................. ..........................73 Chapter 4: Unsupervised Learning: Clustering............................................................77 K-Means Clustering............................................... ...................................78 Choosing K:The Elbow Method............................................................................82 Distance or Similarity Measure........................................................................82 Properties.............................................................. ...................82 General and Euclidean Distance......................................................... ......83 Squared Euclidean Distance............................................ ........................84 Distance Between String-Edit Distance....................................... ....................85 Similarity in the Context of Document.................................................................87 Types of Similarity...............................................................................87 What Is Hierarchical Clustering?....................................................................88 Bottom-Up Approach.......................................................................... 89 Distance Between Clusters.......................................................................90 Top-Down Approach......................................................... ......................92 Graph Theoretical Approach........................................................................97 How Do You Know If the Clustering Result Is Good?...............................................97 Vll TABLE OF CONTENTS Chapter 5: Deep Learning and Neural Networks................................99 Backpropagation.........................................................100 Backpropagation Approach.............................................100 Generalized Delta Rule...............................................100 Update of Output Layer Weights.......................................101 Update of Hidden Layer Weights.......................................102 BPN Summary..........................................................103 Backpropagation Algorithm...............................................104 Other Algorithms........................................................106 TensorFlow..............................................................106 Recurrent Neural Network............................................ 113 Chapter 6: Time Series................................................. 121 Classification of Variation.............................................121 Analyzing a Series Containing a Trend...................................121 Curve Fitting........................................................122 Removing Trends from a Time Series...................................123 Analyzing a Series Containing Seasonality............................. 124 Removing Seasonality from a Time Series............................... 125 By Filtering....................................................... 125 By Differencing......................................................126 Transformation...........................................................126 To Stabilize the Variance............................................126 To Make the Seasonal Effect Additive.................................127 To Make the Data Distribution Normal.................................127 Stationary Time Series................................................ 128 Stationary Process...................................................128 Autocorrelation and the Correlogram..................................129 Estimating Autocovariance and Autocorrelation Functions..............129 viii TABLE OF CONTENTS Time-Series Analysis with Python.....................................130 Useful Methods...................................................131 Autoregressive Processes.........................................133 Estimating Parameters of an AR Process...........................134 Mixed ARMA Models....................................................137 Integrated ARMA Models............................................. 138 The Fourier Transform................................................140 An Exceptional Scenario..............................................141 Missing Data.........................................................143 Chapter 7: Analytics at Scale..........................................145 Hadoop.............................................................. 145 MapReduce Programming............................................145 Partitioning Function............................................146 Combiner Function................................................147 HDFS File System.................................................159 MapReduce Design Pattern.........................................159 Spark................................................................166 Analytics in the Cloud............................................. 168 Internet of Things...................................................179 Index................................................................ 181 ix
any_adam_object 1
author Mukhopadhyay, Sayan
author_GND (DE-588)115695861X
author_facet Mukhopadhyay, Sayan
author_role aut
author_sort Mukhopadhyay, Sayan
author_variant s m sm
building Verbundindex
bvnumber BV044998052
classification_rvk ST 250
ST 530
ctrlnum (OCoLC)1042883813
(DE-599)DNB114831492X
discipline Informatik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02365nam a2200625 c 4500</leader><controlfield tag="001">BV044998052</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180806 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180607s2018 xxuc||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">114831492X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484234495</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-1-4842-3449-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484234499</subfield><subfield code="9">1-4842-3449-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1042883813</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB114831492X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mukhopadhyay, Sayan</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115695861X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced data analytics using Python</subfield><subfield code="b">with machine learning, deep learning and NLP examples</subfield><subfield code="c">Sayan Mukhopadhyay</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Apress</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 186 Seiten</subfield><subfield code="b">Diagramme, Portraits</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Python</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analytics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hadoop</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Storm</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Apache Spark</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Deep Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Neo4j</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Time Series</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Elastic Search</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Python</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Big Data</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Open Source</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Apress L.P.</subfield><subfield code="0">(DE-588)1065538766</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4842-3450-1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=e44d54469749482398a8b03e0cdce009&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.springer.com/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=030390259&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030390259</subfield></datafield></record></collection>
id DE-604.BV044998052
illustrated Illustrated
indexdate 2024-07-10T08:06:33Z
institution BVB
institution_GND (DE-588)1065538766
isbn 9781484234495
1484234499
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030390259
oclc_num 1042883813
open_access_boolean
owner DE-739
DE-11
owner_facet DE-739
DE-11
physical xv, 186 Seiten Diagramme, Portraits
publishDate 2018
publishDateSearch 2018
publishDateSort 2018
publisher Apress
record_format marc
spelling Mukhopadhyay, Sayan Verfasser (DE-588)115695861X aut
Advanced data analytics using Python with machine learning, deep learning and NLP examples Sayan Mukhopadhyay
New York, NY Apress [2018]
© 2018
xv, 186 Seiten Diagramme, Portraits
txt rdacontent
n rdamedia
nc rdacarrier
Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf
Big Data (DE-588)4802620-7 gnd rswk-swf
Datenanalyse (DE-588)4123037-1 gnd rswk-swf
Python
Analytics
Hadoop
Storm
Apache Spark
Machine Learning
Deep Learning
Neo4j
Time Series
Elastic Search
Big Data
Open Source
Big Data (DE-588)4802620-7 s
Datenanalyse (DE-588)4123037-1 s
Python Programmiersprache (DE-588)4434275-5 s
DE-604
Apress L.P. (DE-588)1065538766 pbl
Erscheint auch als Online-Ausgabe 978-1-4842-3450-1
X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=e44d54469749482398a8b03e0cdce009&prov=M&dok_var=1&dok_ext=htm Inhaltstext
X:MVB http://www.springer.com/
Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030390259&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Mukhopadhyay, Sayan
Advanced data analytics using Python with machine learning, deep learning and NLP examples
Python Programmiersprache (DE-588)4434275-5 gnd
Big Data (DE-588)4802620-7 gnd
Datenanalyse (DE-588)4123037-1 gnd
subject_GND (DE-588)4434275-5
(DE-588)4802620-7
(DE-588)4123037-1
title Advanced data analytics using Python with machine learning, deep learning and NLP examples
title_auth Advanced data analytics using Python with machine learning, deep learning and NLP examples
title_exact_search Advanced data analytics using Python with machine learning, deep learning and NLP examples
title_full Advanced data analytics using Python with machine learning, deep learning and NLP examples Sayan Mukhopadhyay
title_fullStr Advanced data analytics using Python with machine learning, deep learning and NLP examples Sayan Mukhopadhyay
title_full_unstemmed Advanced data analytics using Python with machine learning, deep learning and NLP examples Sayan Mukhopadhyay
title_short Advanced data analytics using Python
title_sort advanced data analytics using python with machine learning deep learning and nlp examples
title_sub with machine learning, deep learning and NLP examples
topic Python Programmiersprache (DE-588)4434275-5 gnd
Big Data (DE-588)4802620-7 gnd
Datenanalyse (DE-588)4123037-1 gnd
topic_facet Python Programmiersprache
Big Data
Datenanalyse
url http://deposit.dnb.de/cgi-bin/dokserv?id=e44d54469749482398a8b03e0cdce009&prov=M&dok_var=1&dok_ext=htm
http://www.springer.com/
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030390259&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT mukhopadhyaysayan advanceddataanalyticsusingpythonwithmachinelearningdeeplearningandnlpexamples
AT apresslp advanceddataanalyticsusingpythonwithmachinelearningdeeplearningandnlpexamples