Advanced data analytics using Python with machine learning, deep learning and NLP examples
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Apress
[2018]
|
Schlagworte: | |
Online-Zugang: | Inhaltstext http://www.springer.com/ Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044998052 | ||
003 | DE-604 | ||
005 | 20180806 | ||
007 | t | ||
008 | 180607s2018 xxuc||| |||| 00||| eng d | ||
016 | 7 | |a 114831492X |2 DE-101 | |
020 | |a 9781484234495 |c pbk. |9 978-1-4842-3449-5 | ||
020 | |a 1484234499 |9 1-4842-3449-9 | ||
035 | |a (OCoLC)1042883813 | ||
035 | |a (DE-599)DNB114831492X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-739 |a DE-11 | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
100 | 1 | |a Mukhopadhyay, Sayan |e Verfasser |0 (DE-588)115695861X |4 aut | |
245 | 1 | 0 | |a Advanced data analytics using Python |b with machine learning, deep learning and NLP examples |c Sayan Mukhopadhyay |
264 | 1 | |a New York, NY |b Apress |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a xv, 186 Seiten |b Diagramme, Portraits | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
653 | |a Python | ||
653 | |a Analytics | ||
653 | |a Hadoop | ||
653 | |a Storm | ||
653 | |a Apache Spark | ||
653 | |a Machine Learning | ||
653 | |a Deep Learning | ||
653 | |a Neo4j | ||
653 | |a Time Series | ||
653 | |a Elastic Search | ||
653 | |a Python | ||
653 | |a Big Data | ||
653 | |a Open Source | ||
689 | 0 | 0 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 2 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Apress L.P. |0 (DE-588)1065538766 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4842-3450-1 |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=e44d54469749482398a8b03e0cdce009&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m X:MVB |u http://www.springer.com/ |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030390259&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030390259 |
Datensatz im Suchindex
_version_ | 1804178600698576896 |
---|---|
adam_text | Table of Contents
About the Author............................................................ xi
About the Technical Reviewer.................................................xiii
Acknowledgments....................................................... xv
Chapter 1: Introduction.......................................................1
Why Python?............................................................ 1
When to Avoid Using Python..................................................2
OOP in Python................................................... ...........3
Calling Other Languages in Python...............................................12
Exposing the Python Model as a Microservice.................................14
High-Performance API and Concurrent Programming.................. .........17
Chapter 2: ETL with Python (Structured Data)..................................23
MySQL..................................................................... 23
How to Install MySQLdb?............................. .................23
Database Connection............................................... 24
INSERT Operation............................................ ..........24
READ Operation................................... .....................25
DELETE Operation................................................ 26
UPDATE Operation.............................................. ......¿.27
COMMIT Operation............................................ .........28
ROLL-BACK Operation................................................. 28
v
TABLE OF CONTENTS
Elasticsearch..............................................................31
Connection Layer API....................................................33
Neo4j Python Driver........................................................34
neo4j-rest-client..........................................................35
In-Memory Database..........................................................35
MongoDB (Python Edition)....................................................36
Import Data into the Collection.........................................36
Create a Connection Using pymongo.......................................37
Access Database Objects.................................................37
Insert Data.............................................................38
Update Data.............................................................38
Remove Data.............................................................38
Pandas.....................................................................38
ETL with Python (Unstructured Data).........................................40
E-mail Parsing..........................................................40
Topical Crawling..................................................... 42
Chapter 3: Supervised Learning Using Python................................. 49
Dimensionality Reduction with Python........................................49
Correlation Analysis....................................................50
Principal Component Analysis............................................53
Mutual Information......................................................56
Classifications with Python.................................................57
Semisupervised Learning.....................................................58
Decision Tree...............................................................59
Which Attribute Comes First?.......................................... 59
Random Forest Classifier............................................ 60
vi
TABLE OF CONTENTS
Naive Bayes Classifier................................................................61
Support Vector Machine..................................................................... .........62
Nearest Neighbor Classifier.............................................. ..........................64
Sentiment Analysis................................................................................ 65
Image Recognition....................................................................... ..........67
Regression with Python................................................................................67
Least Square Estimation......................................................................... 68
Logistic Regression..................................................................................69
Classification and Regression.........................................................................70
Intentionally Bias the Model to Over-Fit or Under-Fit...................................................71
Dealing with Categorical Data............................................. ..........................73
Chapter 4: Unsupervised Learning: Clustering............................................................77
K-Means Clustering............................................... ...................................78
Choosing K:The Elbow Method............................................................................82
Distance or Similarity Measure........................................................................82
Properties.............................................................. ...................82
General and Euclidean Distance......................................................... ......83
Squared Euclidean Distance............................................ ........................84
Distance Between String-Edit Distance....................................... ....................85
Similarity in the Context of Document.................................................................87
Types of Similarity...............................................................................87
What Is Hierarchical Clustering?....................................................................88
Bottom-Up Approach.......................................................................... 89
Distance Between Clusters.......................................................................90
Top-Down Approach......................................................... ......................92
Graph Theoretical Approach........................................................................97
How Do You Know If the Clustering Result Is Good?...............................................97
Vll
TABLE OF CONTENTS
Chapter 5: Deep Learning and Neural Networks................................99
Backpropagation.........................................................100
Backpropagation Approach.............................................100
Generalized Delta Rule...............................................100
Update of Output Layer Weights.......................................101
Update of Hidden Layer Weights.......................................102
BPN Summary..........................................................103
Backpropagation Algorithm...............................................104
Other Algorithms........................................................106
TensorFlow..............................................................106
Recurrent Neural Network............................................ 113
Chapter 6: Time Series................................................. 121
Classification of Variation.............................................121
Analyzing a Series Containing a Trend...................................121
Curve Fitting........................................................122
Removing Trends from a Time Series...................................123
Analyzing a Series Containing Seasonality............................. 124
Removing Seasonality from a Time Series............................... 125
By Filtering....................................................... 125
By Differencing......................................................126
Transformation...........................................................126
To Stabilize the Variance............................................126
To Make the Seasonal Effect Additive.................................127
To Make the Data Distribution Normal.................................127
Stationary Time Series................................................ 128
Stationary Process...................................................128
Autocorrelation and the Correlogram..................................129
Estimating Autocovariance and Autocorrelation Functions..............129
viii
TABLE OF CONTENTS
Time-Series Analysis with Python.....................................130
Useful Methods...................................................131
Autoregressive Processes.........................................133
Estimating Parameters of an AR Process...........................134
Mixed ARMA Models....................................................137
Integrated ARMA Models............................................. 138
The Fourier Transform................................................140
An Exceptional Scenario..............................................141
Missing Data.........................................................143
Chapter 7: Analytics at Scale..........................................145
Hadoop.............................................................. 145
MapReduce Programming............................................145
Partitioning Function............................................146
Combiner Function................................................147
HDFS File System.................................................159
MapReduce Design Pattern.........................................159
Spark................................................................166
Analytics in the Cloud............................................. 168
Internet of Things...................................................179
Index................................................................ 181
ix
|
any_adam_object | 1 |
author | Mukhopadhyay, Sayan |
author_GND | (DE-588)115695861X |
author_facet | Mukhopadhyay, Sayan |
author_role | aut |
author_sort | Mukhopadhyay, Sayan |
author_variant | s m sm |
building | Verbundindex |
bvnumber | BV044998052 |
classification_rvk | ST 250 ST 530 |
ctrlnum | (OCoLC)1042883813 (DE-599)DNB114831492X |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02365nam a2200625 c 4500</leader><controlfield tag="001">BV044998052</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180806 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180607s2018 xxuc||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">114831492X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484234495</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-1-4842-3449-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484234499</subfield><subfield code="9">1-4842-3449-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1042883813</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB114831492X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mukhopadhyay, Sayan</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115695861X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced data analytics using Python</subfield><subfield code="b">with machine learning, deep learning and NLP examples</subfield><subfield code="c">Sayan Mukhopadhyay</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Apress</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 186 Seiten</subfield><subfield code="b">Diagramme, Portraits</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Python</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analytics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hadoop</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Storm</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Apache Spark</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Deep Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Neo4j</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Time Series</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Elastic Search</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Python</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Big Data</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Open Source</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Apress L.P.</subfield><subfield code="0">(DE-588)1065538766</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4842-3450-1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=e44d54469749482398a8b03e0cdce009&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.springer.com/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030390259&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030390259</subfield></datafield></record></collection> |
id | DE-604.BV044998052 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:06:33Z |
institution | BVB |
institution_GND | (DE-588)1065538766 |
isbn | 9781484234495 1484234499 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030390259 |
oclc_num | 1042883813 |
open_access_boolean | |
owner | DE-739 DE-11 |
owner_facet | DE-739 DE-11 |
physical | xv, 186 Seiten Diagramme, Portraits |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Apress |
record_format | marc |
spelling | Mukhopadhyay, Sayan Verfasser (DE-588)115695861X aut Advanced data analytics using Python with machine learning, deep learning and NLP examples Sayan Mukhopadhyay New York, NY Apress [2018] © 2018 xv, 186 Seiten Diagramme, Portraits txt rdacontent n rdamedia nc rdacarrier Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf Big Data (DE-588)4802620-7 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Python Analytics Hadoop Storm Apache Spark Machine Learning Deep Learning Neo4j Time Series Elastic Search Big Data Open Source Big Data (DE-588)4802620-7 s Datenanalyse (DE-588)4123037-1 s Python Programmiersprache (DE-588)4434275-5 s DE-604 Apress L.P. (DE-588)1065538766 pbl Erscheint auch als Online-Ausgabe 978-1-4842-3450-1 X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=e44d54469749482398a8b03e0cdce009&prov=M&dok_var=1&dok_ext=htm Inhaltstext X:MVB http://www.springer.com/ Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030390259&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Mukhopadhyay, Sayan Advanced data analytics using Python with machine learning, deep learning and NLP examples Python Programmiersprache (DE-588)4434275-5 gnd Big Data (DE-588)4802620-7 gnd Datenanalyse (DE-588)4123037-1 gnd |
subject_GND | (DE-588)4434275-5 (DE-588)4802620-7 (DE-588)4123037-1 |
title | Advanced data analytics using Python with machine learning, deep learning and NLP examples |
title_auth | Advanced data analytics using Python with machine learning, deep learning and NLP examples |
title_exact_search | Advanced data analytics using Python with machine learning, deep learning and NLP examples |
title_full | Advanced data analytics using Python with machine learning, deep learning and NLP examples Sayan Mukhopadhyay |
title_fullStr | Advanced data analytics using Python with machine learning, deep learning and NLP examples Sayan Mukhopadhyay |
title_full_unstemmed | Advanced data analytics using Python with machine learning, deep learning and NLP examples Sayan Mukhopadhyay |
title_short | Advanced data analytics using Python |
title_sort | advanced data analytics using python with machine learning deep learning and nlp examples |
title_sub | with machine learning, deep learning and NLP examples |
topic | Python Programmiersprache (DE-588)4434275-5 gnd Big Data (DE-588)4802620-7 gnd Datenanalyse (DE-588)4123037-1 gnd |
topic_facet | Python Programmiersprache Big Data Datenanalyse |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=e44d54469749482398a8b03e0cdce009&prov=M&dok_var=1&dok_ext=htm http://www.springer.com/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030390259&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT mukhopadhyaysayan advanceddataanalyticsusingpythonwithmachinelearningdeeplearningandnlpexamples AT apresslp advanceddataanalyticsusingpythonwithmachinelearningdeeplearningandnlpexamples |