Stochastic H 2/H[infinity symbol] control a Nash game approach

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhang, Weihai (VerfasserIn), Xie, Lihua (VerfasserIn), Chen, Bor-Sen (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton CRC Press, Taylor & Francis Group [2017]
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Klappentext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV044945350
003 DE-604
005 20240215
007 t
008 180516s2017 xxua||| |||| 00||| eng d
010 |a 017285426 
020 |a 9781466573642  |9 978-1-4665-7364-2 
020 |a 1466573643  |9 1-4665-7364-3 
035 |a (OCoLC)1057700923 
035 |a (DE-599)BVBBV044945350 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-703 
050 0 |a QA402.37 
082 0 |a 629.8/312  |2 23 
084 |a SK 880  |0 (DE-625)143266:  |2 rvk 
100 1 |a Zhang, Weihai  |e Verfasser  |4 aut 
245 1 0 |a Stochastic H 2/H[infinity symbol] control  |b a Nash game approach  |c Weihai Zhang, Lihua Xie, Bor-Sen Chen 
264 1 |a Boca Raton  |b CRC Press, Taylor & Francis Group  |c [2017] 
264 4 |c © 2017 
300 |a xix, 369 pages  |b illustrations (black and white)  |c 24 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Includes bibliographical references and index 
650 4 |a Game theory / fast / (OCoLC)fst00937501 
650 4 |a Stochastic control theory / fast / (OCoLC)fst01133503 
650 4 |a Technology / ukslc 
650 4 |a Stochastic control theory 
650 4 |a Game theory 
650 4 |a Game theory 
650 4 |a Stochastic control theory 
650 4 |a Technology 
650 0 7 |a Stochastische Kontrolltheorie  |0 (DE-588)4263657-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Stochastische Kontrolltheorie  |0 (DE-588)4263657-7  |D s 
689 0 |5 DE-604 
700 1 |a Xie, Lihua  |e Verfasser  |4 aut 
700 1 |a Chen, Bor-Sen  |e Verfasser  |4 aut 
856 4 2 |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030338189&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030338189&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
999 |a oai:aleph.bib-bvb.de:BVB01-030338189 

Datensatz im Suchindex

_version_ 1804178532486610944
adam_text Contents Preface *x List of Tables xiii List of Figures xv Symbols and Acronyms xvii 1 Mathematical Preliminaries 1 1.1 Stochastic Differential Equations................................. 1 1.1.1 Existence and uniqueness of solutions..................... 1 1.1.2 Ito’s formula............................................. 6 1.1.3 Various definitions of stability......................... 10 1.2 Generalized Lyapunov Operators................................... 12 1.3 Basic Concepts of Stochastic Systems ............................ 17 1.3.1 Exact observability...................................... 17 1.3.2 Exact detectability...................................... 23 1.3.3 Mean square stabilization................................ 26 1.4 Notes and References............................................. 28 2 Linear Continuous-Time Stochastic H2J H00 Control 29 2.1 Introduction..................................................... 29 2.2 Finite Horizon H2/Hac Control ................................... 30 2.2.1 Definitions and lemmas................................... 31 2.2.2 Finite horizon stochastic bounded real lemma (SBRL) . . 34 2.2.3 Finite horizon stochastic LQ control..................... 39 2.2.4 Conditions for the existence of Nash equilibrium strategies 41 2.2.5 Main results............................................. 44 2.2.6 Unified treatment of H2, Hoo and mixed H2/H yo control problems................................................. 52 2.3 Infinite Horizon H2jControl...................................... 55 2.3.1 Two Lyapunov-type theorems............................... 57 2.3.2 Infinite horizon stochastic LQ control................... 61 2.3.3 Infinite horizon SBRL.................................... 70 2.3.4 Stochastic H2/H00 control................................ 76 2.4 Relationship between Stochastic H2/Hao and Nash Game .... 84 2.5 Algorithm for Solving Coupled GAREs ............................. 87 v Vi Contents 2.6 Notes and References................................................. 88 3 Linear Discrete-Time Stochastic H2/Control 91 3.1 Finite Horizon H2/Hoo Control ....................................... 91 3.1.1 Definitions........................................... 92 3.1.2 Two identities........................................ 94 3.1.3 Finite horizon SBRL................................... 96 3.1.4 Discrete-time stochastic LQ control................... 99 3.1.5 Finite horizon 7/2/7/00 with (x, ^-dependent noise . . . 100 3.1.6 Unified treatment of H2, // 0 and H2/H00 control .... 103 3.1.7 A numerical example.................................. 106 3.1.8 H2/Hog control of systems with (x. u)~ and (x. ?/, ?;)-dependent noise ...................................................... 107 3.2 Two-Person Non-Zero Sum Nash Game .................................. 109 3.3 Infinite Horizon i72/7/oo Control................................... Ill 3.3.1 Preliminaries........................................ 112 3.3.2 Standard LQ control result........................... 117 3.3.3 An SBRL.............................................. 120 3.3.4 7/2/7/00 control with (.r. t )-dependent noise 125 3.3.5 Numerical algorithms................................. 133 3.3.6 T/s/T/oo control with (x, u)- and (x. u. i )~dependent noise 139 3.4 Infinite Horizon Indefinite LQ Control ............................. 141 3.5 Comments on Stochastic H2/Hr^ and Nash Game....................... 147 3.6 Notes and References 147 4 7/2/7/00 Control for Linear Discrete Time-Varying Stochastic Systems 149 4.1 Stability and Uniform Detectability................................. 149 4.2 Lyapunov-Type Theorem under Uniform Detectability................... 156 4.3 Exact Detectability ................................................ 161 4.4 Lyapunov-Type Theorems for Periodic Systems under Exact De- tectability ........................................................... 166 4.5 Further Remarks on LDTV Systems .................................. 168 4.6 Infinite Horizon Time-Varying T/2/7/oo Control...................... 169 4.7 Notes and References................................................ 172 5 Linear Markovian Jump Systems with Multiplicative Noise 173 5.1 Introduction........................................................ 173 5.2 Finite Horizon 7/2/7/00 Control of Discrete-Time Markov Jump Systems ............................................................ 174 5.2.1 An SBRL..................................................... 175 5.2.2 Results on the 7/2/7/00 control ............................ 179 5.2.3 Algorithm and numerical example............................. 181 5.2.4 Unified treatment of 772, 7/oo and 772/7/oc control based on Nash game .............................................. 182 5.3 Infinite Horizon Discrete Time-Varying 7/2/7/00 Control ............ 187 Contents vii 5.3.1 Definitions and preliminaries........................... 188 5.3.2 AnSBRL.................................................. 189 5.3.3 Main result ............................................ 193 5.3.4 An economic example..................................... 196 5.4 Infinite Horizon Discrete Time-Invariant H2/Hoo Control........... 197 5.4.1 Stability, stabilization, and SBRL...................... 199 5.4.2 Exact detectability and extended Lyapunov theorem . . . . 201 5.4.3 Main result and numerical algorithm.....................203 5.5 Finite Horizon //2///00 Control of Continuous-Time Systems . . 207 5.5.1 Definitions and lemmas.....................................208 5.5.2 Nash equilibrium strategy and H2/Hog control............211 5.6 Infinite Horizon Continuous-Time//2/iToo Control...................215 5.6.1 A moment equation..........................................215 5.6.2 Exact observability and detectability .....................217 5.6.3 Comments on the 7/2/7/00 control...........................220 5.7 Notes and References............................................ . 221 6 Nonlinear Continuous-Time Stochastic and 7/2/7/00 Controls 223 6.1 Dissipative Stochastic Systems ................................... 223 6.2 Observability and Detectability....................................227 6.3 Infinite Horizon H^ Control . . 229 6.4 Finite Horizon Nonlinear Ha0 Control ..............................236 6.5 T/qo Control of More General Stochastic Nonlinear Systems . 241 6.6 Finite Horizon 7/2/7/00 Control ...................................250 6.7 Notes and References ............................................. 257 7 Nonlinear Stochastic Hoo and //2///oo Filtering 259 7.1 Nonlinear Hqq Filtering: Delay-Free Case...........................259 7.1.1 Lemmas and definitions ....................................260 7.1.2 Main results...............................................261 7.2 Suboptimal Mixed 7/2/7/00 Filtering................................266 7.3 LMI-Based Approach for Quasi-Linear Filter Design .... 268 7.4 Suboptimal Mixed 7/2/7/00 Filtering of Quasi-Linear Systems . . 274 7.5 Numerical Example..................................................277 7.6 Nonlinear Filtering: Time-Delay Case............................278 7.6.1 Definitions and lemmas.....................................278 7.6.2 Main results...............................................285 7.7 Luenberger-Type Linear Time-Delay Hoo Filtering ...................288 7.8 Notes and References ..............................................291 8 Some Further Research Topics in Stochastic 7/2/T/oo Control 293 8.1 Stochastic 7/2/7/00 Control with Random Coefficients ..............293 8.1.1 SBRL and stochastic LQ lemma.............................294 8.1.2 Mixed 7/2/7/00 control................................... 296 8.1.3 //oo control.......................................... 298 Contents viii 8.1.4 Some unsolved problems .................................301 8.2 Nonlinear Discrete-Time Stochastic H2/Hoo Control ...............302 8.2.1 Dissipation, ¿2-gain and SBRL................................303 8.2.2 Observability and detectability .............................306 8.2.3 Review of martingale theory..................................307 8.2.4 LaSalle-type theorems........................................308 8.2.5 Difficulties in affine nonlinear discrete H2/H00 control . . 316 8.3 Singular Stochastic H2/Hc 0 Control..................................316 8.3.1 Lemma and definition ........................................317 8.3.2 Asymptotical mean square admissibility.......................318 8.3.3 An illustrative example......................................324 8.3.4 Problems in H2/i7oo control..................................325 8.4 Mean-Field Stochastic H2/if00 Control ................................326 8.4.1 Definition for H2/i7oo control...............................326 8.4.2 Finite horizon SBRL..........................................327 8.4.3 Mean-field stochastic LQ control.............................336 8.4.4 H2/Hoo control with (x, t;)-dependent noise..................337 8.4.5 Further research problems....................................341 8.5 Notes and References..................................................341 References 343 Index 361 Electrical Systems and Controls Stochastic HJH Control 2. oo Stochastic Control: A Nash Game Approach presents the latest results in stochastic H2 = H1 control and filtering based on the Nash game approach. After providing some basics of stochastic differential equations, stochastic stability, stochastic observability and detectability, the book solves the H2 = /-/, control for linear ltd systems and establish- es a relationship between the H2=H1 control and two-person non-zero sum Nash game. It then discusses the control for linear discrete time-invariant systems with multiplicative noise, then focuses on linear discrete time-varying systems. After a discussion of mixed control for linear Markov jump systems with multiplicative noise, it establishes the equivalence between stochastic dissipativity and the solvability of nonlinear Lure. The next chapter can be viewed as an extension of deterministic non- linear control. The penultimate chapter is concerned with nonlinear H_ and H2- H, filters of ltd systems, which have potential applications in communication and signal processing. Finally, the authors present some further research topics in stochastic control, including the control of the following systems: (i) stochastic ltd systems with random coefficients; (ii) nonlinear discrete-time stochastic systems with multipli- cative noise; (iii) singular stochastic ltd systems and singular discrete-time systems with multiplicative noise; and (iv) mean-field stochastic systems. At the end of each chapter there is a brief review of related background knowledge and further research topics. Klbbbl ISBN: =|70-l-MbbS-73b4-B III 014fc b S73L42 TO □ 0 www.crcpress.com
any_adam_object 1
author Zhang, Weihai
Xie, Lihua
Chen, Bor-Sen
author_facet Zhang, Weihai
Xie, Lihua
Chen, Bor-Sen
author_role aut
aut
aut
author_sort Zhang, Weihai
author_variant w z wz
l x lx
b s c bsc
building Verbundindex
bvnumber BV044945350
callnumber-first Q - Science
callnumber-label QA402
callnumber-raw QA402.37
callnumber-search QA402.37
callnumber-sort QA 3402.37
callnumber-subject QA - Mathematics
classification_rvk SK 880
ctrlnum (OCoLC)1057700923
(DE-599)BVBBV044945350
dewey-full 629.8/312
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 629 - Other branches of engineering
dewey-raw 629.8/312
dewey-search 629.8/312
dewey-sort 3629.8 3312
dewey-tens 620 - Engineering and allied operations
discipline Mathematik
Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02236nam a2200529 c 4500</leader><controlfield tag="001">BV044945350</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240215 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180516s2017 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">017285426</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781466573642</subfield><subfield code="9">978-1-4665-7364-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1466573643</subfield><subfield code="9">1-4665-7364-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1057700923</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044945350</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA402.37</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.8/312</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 880</subfield><subfield code="0">(DE-625)143266:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Weihai</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic H 2/H[infinity symbol] control</subfield><subfield code="b">a Nash game approach</subfield><subfield code="c">Weihai Zhang, Lihua Xie, Bor-Sen Chen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">CRC Press, Taylor &amp; Francis Group</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xix, 369 pages</subfield><subfield code="b">illustrations (black and white)</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Game theory / fast / (OCoLC)fst00937501</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic control theory / fast / (OCoLC)fst01133503</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technology / ukslc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Game theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Game theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Kontrolltheorie</subfield><subfield code="0">(DE-588)4263657-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Kontrolltheorie</subfield><subfield code="0">(DE-588)4263657-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Lihua</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Bor-Sen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=030338189&amp;sequence=000003&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=030338189&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030338189</subfield></datafield></record></collection>
id DE-604.BV044945350
illustrated Illustrated
indexdate 2024-07-10T08:05:28Z
institution BVB
isbn 9781466573642
1466573643
language English
lccn 017285426
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030338189
oclc_num 1057700923
open_access_boolean
owner DE-703
owner_facet DE-703
physical xix, 369 pages illustrations (black and white) 24 cm
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher CRC Press, Taylor & Francis Group
record_format marc
spelling Zhang, Weihai Verfasser aut
Stochastic H 2/H[infinity symbol] control a Nash game approach Weihai Zhang, Lihua Xie, Bor-Sen Chen
Boca Raton CRC Press, Taylor & Francis Group [2017]
© 2017
xix, 369 pages illustrations (black and white) 24 cm
txt rdacontent
n rdamedia
nc rdacarrier
Includes bibliographical references and index
Game theory / fast / (OCoLC)fst00937501
Stochastic control theory / fast / (OCoLC)fst01133503
Technology / ukslc
Stochastic control theory
Game theory
Technology
Stochastische Kontrolltheorie (DE-588)4263657-7 gnd rswk-swf
Stochastische Kontrolltheorie (DE-588)4263657-7 s
DE-604
Xie, Lihua Verfasser aut
Chen, Bor-Sen Verfasser aut
Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030338189&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030338189&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext
spellingShingle Zhang, Weihai
Xie, Lihua
Chen, Bor-Sen
Stochastic H 2/H[infinity symbol] control a Nash game approach
Game theory / fast / (OCoLC)fst00937501
Stochastic control theory / fast / (OCoLC)fst01133503
Technology / ukslc
Stochastic control theory
Game theory
Technology
Stochastische Kontrolltheorie (DE-588)4263657-7 gnd
subject_GND (DE-588)4263657-7
title Stochastic H 2/H[infinity symbol] control a Nash game approach
title_auth Stochastic H 2/H[infinity symbol] control a Nash game approach
title_exact_search Stochastic H 2/H[infinity symbol] control a Nash game approach
title_full Stochastic H 2/H[infinity symbol] control a Nash game approach Weihai Zhang, Lihua Xie, Bor-Sen Chen
title_fullStr Stochastic H 2/H[infinity symbol] control a Nash game approach Weihai Zhang, Lihua Xie, Bor-Sen Chen
title_full_unstemmed Stochastic H 2/H[infinity symbol] control a Nash game approach Weihai Zhang, Lihua Xie, Bor-Sen Chen
title_short Stochastic H 2/H[infinity symbol] control
title_sort stochastic h 2 h infinity symbol control a nash game approach
title_sub a Nash game approach
topic Game theory / fast / (OCoLC)fst00937501
Stochastic control theory / fast / (OCoLC)fst01133503
Technology / ukslc
Stochastic control theory
Game theory
Technology
Stochastische Kontrolltheorie (DE-588)4263657-7 gnd
topic_facet Game theory / fast / (OCoLC)fst00937501
Stochastic control theory / fast / (OCoLC)fst01133503
Technology / ukslc
Stochastic control theory
Game theory
Technology
Stochastische Kontrolltheorie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030338189&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030338189&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT zhangweihai stochastich2hinfinitysymbolcontrolanashgameapproach
AT xielihua stochastich2hinfinitysymbolcontrolanashgameapproach
AT chenborsen stochastich2hinfinitysymbolcontrolanashgameapproach