Applied economic forecasting using time series methods

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ghysels, Eric 1956- (VerfasserIn), Marcellino, Massimiliano 1970- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York Oxford University Press [2018]
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV044921336
003 DE-604
005 20181227
007 t|
008 180426s2018 xx |||| |||| 00||| eng d
020 |a 9780190622015  |9 978-0-19-062201-5 
035 |a (OCoLC)1012608387 
035 |a (DE-599)BVBBV044921336 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-384  |a DE-355  |a DE-739  |a DE-11  |a DE-N2  |a DE-523  |a DE-20 
084 |a QH 237  |0 (DE-625)141552:  |2 rvk 
100 1 |a Ghysels, Eric  |d 1956-  |e Verfasser  |0 (DE-588)130422134  |4 aut 
245 1 0 |a Applied economic forecasting using time series methods  |c Eric Ghysels (University of North Carolina, Chapel Hill, United States), Massimiliano Marcellino (Bocconi University, Milan, Italy) 
264 1 |a New York  |b Oxford University Press  |c [2018] 
264 4 |c © 2018 
300 |a xviii, 597 Seiten  |b Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Wirtschaft  |0 (DE-588)4066399-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Prognose  |0 (DE-588)4047390-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Zeitreihenanalyse  |0 (DE-588)4067486-1  |2 gnd  |9 rswk-swf 
653 0 |a Economic forecasting / Mathematical models 
653 0 |a Economic forecasting / Statistical methods 
653 0 |a Economic forecasting / Mathematical models 
653 0 |a Economic forecasting / Statistical methods 
689 0 0 |a Wirtschaft  |0 (DE-588)4066399-1  |D s 
689 0 1 |a Prognose  |0 (DE-588)4047390-9  |D s 
689 0 2 |a Zeitreihenanalyse  |0 (DE-588)4067486-1  |D s 
689 0 |C b  |5 DE-604 
700 1 |a Marcellino, Massimiliano  |d 1970-  |e Verfasser  |0 (DE-588)114655065  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe, EPUB  |z 978-0-19-062203-9 
856 4 2 |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030314614&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030314614 

Datensatz im Suchindex

DE-BY-UBR_call_number 40/QH 237 G427
DE-BY-UBR_katkey 6027564
DE-BY-UBR_location 40
DE-BY-UBR_media_number 069041420958
_version_ 1822697063762100224
adam_text Contents Preface xv Part I Forecasting with the Linear Regression Model 1 The Baseline Linear Regression Model 3 1.1 Introduction ................................................. 3 1.2 The basic specification....................................... 4 1.3 Parameter estimation ......................................... 6 1.4 Measures of model fit ........................................ 8 1.5 Constructing point forecasts................................. 10 1.6 Interval and density forecasts .............................. 13 1.7 Parameter testing ........................................... 15 1.8 Variable selection........................................... 18 1.9 Automated variable selection procedures...................... 21 1.9.1 Forward selection (FWD) ...............................22 1.9.2 Least angle regressions (LARS)....................... 22 1.9.3 LASSO and elastic net estimator (NET)................23 1.10 Multicollinearity .......................................... 24 1.11 Example using simulated data ............................... 26 1.11.1 Data simulation procedure............................. 26 1.12 Empirical examples ......................................... 32 1.12.1 Forecasting Euro area GDP growth..................... 32 1.12.2 Forecasting US GDP growth............................ 43 1.13 A hint of dynamics.......................................... 47 1.13.1 Revisiting GDP forecasting ............................48 v VI CONTENTS 1.13.2 Forecasting default risk...............................49 1.14 Concluding remarks ...........................................55 2 Model Mis-Specification 57 2.1 Introduction................................................. 57 2.2 Heteroskedastic and correlated errors........................ 57 2.2.1 The Generalized Least Squares (GLS) estimator and the feasible GLS estimator.............................60 2.3 HAC estimators ...............................................64 2.4 Some tests for homoskedasticity and no correlation............66 2.5 Parameter instability.........................................69 2.5.1 The effects of parameter changes ....................70 2.5.2 Simple tests for parameter changes.....................71 2.5.3 Recursive methods......................................74 2.5.4 Dummy variables........................................76 2.5.5 Multiple breaks....................................... 78 2.6 Measurement error and real-time data ........................ 80 2.7 Instrumental variables........................................82 2.8 Examples using simulated data.................................84 2.9 Empirical examples .......................................... 94 2.9.1 Forecasting Euro area GDP growth.......................94 2.9.2 Forecasting US GDP growth.............................107 2.9.3 Default risk..........................................114 2.10 Concluding remarks ..........................................118 3 The Dynamic Linear Regression Model 119 3.1 Introduction.................................................119 3.2 Types of dynamic linear regression models ......................................................120 3.3 Estimation and testing.......................................125 3.4 Model specification..........................................126 3.5 Forecasting with dynamic models..............................128 3.6 Examples with simulated data ................................130 3.7 Empirical examples ..........................................132 3.7.1 Forecasting Euro area GDP growth......................133 3.7.2 Forecasting US GDP growth.............................138 CONTENTS vii 3.7.3 Default risk........................................142 3.8 Concluding remarks ........................................142 4 Forecast Evaluation and Combination 145 4.1 Introduction...............................................145 4.2 Unbiasedness and efficiency ...............................146 4.3 Evaluation of fixed event forecasts .......................149 4.4 Tests of predictive accuracy...............................150 4.5 Forecast comparison tests .................................152 4.6 The combination of forecasts ..............................154 4.7 Forecast encompassing......................................156 4.8 Evaluation and combination of density forecasts............157 4.8.1 Evaluation..........................................158 4.8.2 Comparison..........................................159 4.8.3 Combination ........................................159 4.9 Examples using simulated data..............................160 4.10 Empirical examples .......................................164 4.10.1 Forecasting Euro area GDP growth....................164 4.10.2 Forecasting US GDP growth...........................167 4.10.3 Default risk........................................169 4.11 Concluding remarks ..................................170 Part II Forecasting with Time Series Models 5 Univariate Time Series Models 173 5.1 Introduction...............................................173 5.2 Representation ............................................174 5.2.1 Autoregressive processes............................176 5.2.2 Moving average processes ...........................180 5.2.3 ARMA processes......................................181 5.2.4 Integrated processes ...............................183 5.2.5 ARIMA processes.....................................184 5.3 Model specification.......................................185 5.3.1 AC/PAC based specification......................... 185 5.3.2 Testing based specification.........................186 5.3.3 Testing for ARCH ...................................187 Vlll CONTENTS 5.3.4 Specification with information criteria ..............187 5.4 Estimation ...................................................189 5.5 Unit root tests ..............................................190 5.6 Diagnostic checking ..........................................195 5.7 Forecasting, known parameters ................................196 5.7.1 General formula.......................................196 5.7.2 Some examples.........................................197 5.7.3 Some additional comments..............................201 5.8 Forecasting, estimated parameters ............................202 5.9 Multi-steps (or direct) estimation............................204 5.10 Permanent-transitory decomposition ..........................207 5.10.1 The Beveridge Nelson decomposition....................207 5.10.2 The Hodrick-Prescott filter...........................209 5.11 Exponential smoothing .......................................209 5.12 Seasonality .................................................211 5.12.1 Deterministic seasonality.............................212 5.12.2 Stochastic seasonality................................213 5.13 Examples with simulated data ...............................214 5.13.1 Stationary ARMA processes.............................214 5.13.2 Estimation: Full sample analysis .....................218 5.13.3 Estimation: Subsample analysis........................220 5.13.4 Forecasting...........................................227 5.14 Empirical examples ..........................................228 5.14.1 Modeling and forecasting the US federal funds rate . . 228 5.14.2 Modeling and forecasting US inventories...............240 5.15 Concluding remarks ..........................................251 6 VAR Models 253 6.1 Representation ...............................................254 6.2 Specification of the model....................................256 6.3 Estimation ...................................................257 6.4 Diagnostic checks.............................................260 6.5 Forecasting ..................................................261 6.6 Impulse response functions ...................................263 6.7 Forecast error variance decomposition ........................268 6.8 Structural VARs with long-run restrictions 269 6.9 VAR models with simulated data................................271 CONTENTS IX 6.10 Empirical examples ...........................................282 6.10.1 GDP growth in the Euro area............................282 6.10.2 Monetary transmission mechanism .......................289 6.11 Concluding remarks ...........................................300 7 Error Correction Models 301 7.1 Introduction..................................................301 7.2 Spurious regressions .........................................302 7.3 Cointegration and error correction models.....................303 7.4 Engle and Granger cointegration test..........................305 7.5 Johansen cointegration test ..................................306 7.6 MA representations of cointegrated processes ....................................................308 7.7 Forecasting in the presence of cointegration ................................................311 7.8 The effects of stochastic trends on forecasts ....................................................312 7.9 Example using simulated series ...............................313 7.10 Empirical examples ...........................................323 7.10.1 Term structure of UK interest rates....................323 7.10.2 Composite coincident and leading indexes ..............334 7.10.3 Predicting coincident and leading indices in the period before the crisis......................................334 7.10.4 Predicting coincident and leading indices during the financial crisis............................340 7.11 Concluding remarks ...........................................342 8 Bayesian VAR Models 345 8.1 Introduction..................................................345 8.2 A primer on Bayesian econometrics.............................346 8.2.1 Parameters as random variables.........................347 8.2.2 From prior to posterior distribution...................347 8.2.3 An example: The posterior of the mean when the variance is known......................................348 8.2.4 The Bayesian linear regression model...................350 8.3 Baseline Bayesian VAR case....................................353 X CONTENTS 8.3.1 Baseline BVAR specification............................353 8.3.2 Prior parameterizations ...............................354 8.4 Forecasting with the BVAR.....................................356 8.4.1 The proper method.....................................356 8.4.2 The pseudo-iterated approach..........................357 8.4.3 The direct forecasting approach.......................358 8.5 Example with simulated data.................................359 8.6 Empirical examples ...........................................361 8.6.1 GDP growth in the Euro area............................361 8.6.2 Multi-country inflation rates..........................362 8.7 Concluding remarks ...........................................364 Part III TAR, Markov Switching, and State Space Models 9 TAR and STAR Models 369 9.1 Introduction..................................................369 9.2 Specification ................................................371 9.3 Estimation ...................................................373 9.4 Testing for STAR and TAR......................................374 9.5 Diagnostic tests .............................................376 9.6 Forecasting ..................................................376 9.6.1 Point forecasts ..................................376 9.6.2 Interval forecasts.....................................378 9.7 Artificial neural networks ...................................379 9.8 Example: Simulated data ......................................382 9.8.1 Testing for linearity versus non-linearity.............382 9.8.2 Estimation.............................................384 9.8.3 Forecasting............................................386 9.8.4 Two-steps ahead forecasting............................388 9.9 Example: Forecasting industrial production growth ............................................392 9.10 Concluding remarks ...........................................397 10 Markov Switching Models 399 10.1 Introduction................................................399 CONTENTS xi 10.2 Markov chains .............................................400 10.3 Mixture of i.i.d. distributions ...........................403 10.4 Markov switching dynamic models ...........................406 10.5 Empirical example: Simulated data..........................410 10.6 Empirical example: Industrial production ..................413 10.7 Concluding remarks ........................................417 11 State Space Models 419 11.1 Introduction...............................................419 11.2 Models in state space form ................................420 11.2.1 An ARMA(2,2) model..................................421 11.2.2 A time-varying parameters (TVP) regression model . . 422 11.2.3 A model with stochastic volatility................423 11.2.4 A dynamic factor model..............................424 11.2.5 Unobserved component models ........................425 11.3 The Kalman filter .........................................426 11.3.1 The key equations of the Kalman filter............427 11.3.2 The iterative procedure.............................429 11.3.3 Some derivations and additional results...........430 11.4 Example with simulated data: The TVP regression model . . 432 11.5 Empirical examples ........................................440 11.5.1 Forecasting US GDP growth with a TVP model .... 440 11.5.2 Forecasting GDP growth with dynamic factor models . 444 11.6 Concluding remarks ........................................449 Part IV Mixed Frequency, Large Datasets, and Volatility 12 Models for Mixed-Frequency Data 453 12.1 Introduction...............................................453 12.2 Bridge equations ..........................................455 12.3 MIDAS Regressions..........................................459 12.3.1 The basic MIDAS regression model....................460 12.3.2 The AR-MIDAS and ADL-MIDAS models...................463 12.3.3 Slope or no slope?..................................463 12.3.4 U-MIDAS and MIDAS with step functions ..............465 cii CONTENTS 12.3.5 Extensions of the MIDAS regression model.............466 12.4 Mixed-frequency VAR .................................470 12.4.1 Parameter-driven approach.............................471 12.4.2 Observation-driven approach...........................474 12.5 Example: Nowcasting with simulated data....................476 12.5.1 The bridge equation approach..........................477 12.5.2 The MIDAS regression approach ........................480 12.6 Example: Nowcasting US GDP growth.........................482 12.6.1 Predicting the worst trough of the crisis ............483 12.6.2 Predicting mild positive and negative growth rates . . 493 12.6.3 Predicting GDP growth rates, 2007-2012 .............. 496 12.7 Concluding remarks .........................................501 13 Models for Large Datasets 503 13.1 Introduction................................................503 13.2 Factor models ..............................................504 13.3 The three pass regression filter............................509 13.4 Large unbalanced datasets...................................512 13.4.1 Mixed-frequency factor models.........................512 13.4.2 Mixed-frequency three pass regression filter..........516 13.4.3 Missing observations and ragged edges.................519 13.5 Example with simulated data.................................520 13.6 Empirical example: Forecasting GDP growth ..................521 13.7 Concluding remarks .........................................527 14 Forecasting Volatility 531 14.1 Introduction................................................531 14.2 ARCH-type models ...........................................532 14.2.1 Model specifications .................................533 14.2.2 Estimation............................................537 14.3 MIDAS regressions and volatility forecasting ...............539 14.3.1 Realized volatility...................................540 14.3.2 Realized volatility and MIDAS regressions.............541 14.3.3 HAR models............................................541 14.3.4 Direct versus iterated volatility forecasting.........542 14.3.5 Variations on the theme of MIDAS regressions..........544 CONTENTS xiii 14.4 GARCH models again....................................545 14.5 Volatility forecasting evaluation.....................546 14.6 Forecasting S P 500 index volatility..................548 14.6.1 ARCH-type models ..............................549 14.6.2 Realized volatility ...........................551 14.7 Concluding remarks ...................................555 Bibliography 559 Subject Index 587 Author Index 592
any_adam_object 1
author Ghysels, Eric 1956-
Marcellino, Massimiliano 1970-
author_GND (DE-588)130422134
(DE-588)114655065
author_facet Ghysels, Eric 1956-
Marcellino, Massimiliano 1970-
author_role aut
aut
author_sort Ghysels, Eric 1956-
author_variant e g eg
m m mm
building Verbundindex
bvnumber BV044921336
classification_rvk QH 237
ctrlnum (OCoLC)1012608387
(DE-599)BVBBV044921336
discipline Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02047nam a2200445 c 4500</leader><controlfield tag="001">BV044921336</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20181227 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">180426s2018 xx |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780190622015</subfield><subfield code="9">978-0-19-062201-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012608387</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044921336</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 237</subfield><subfield code="0">(DE-625)141552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghysels, Eric</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)130422134</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied economic forecasting using time series methods</subfield><subfield code="c">Eric Ghysels (University of North Carolina, Chapel Hill, United States), Massimiliano Marcellino (Bocconi University, Milan, Italy)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 597 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wirtschaft</subfield><subfield code="0">(DE-588)4066399-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prognose</subfield><subfield code="0">(DE-588)4047390-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Economic forecasting / Mathematical models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Economic forecasting / Statistical methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Economic forecasting / Mathematical models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Economic forecasting / Statistical methods</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wirtschaft</subfield><subfield code="0">(DE-588)4066399-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Prognose</subfield><subfield code="0">(DE-588)4047390-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marcellino, Massimiliano</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114655065</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-0-19-062203-9</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=030314614&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030314614</subfield></datafield></record></collection>
id DE-604.BV044921336
illustrated Not Illustrated
indexdate 2024-12-24T06:24:44Z
institution BVB
isbn 9780190622015
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030314614
oclc_num 1012608387
open_access_boolean
owner DE-384
DE-355
DE-BY-UBR
DE-739
DE-11
DE-N2
DE-523
DE-20
owner_facet DE-384
DE-355
DE-BY-UBR
DE-739
DE-11
DE-N2
DE-523
DE-20
physical xviii, 597 Seiten Diagramme
publishDate 2018
publishDateSearch 2018
publishDateSort 2018
publisher Oxford University Press
record_format marc
spellingShingle Ghysels, Eric 1956-
Marcellino, Massimiliano 1970-
Applied economic forecasting using time series methods
Wirtschaft (DE-588)4066399-1 gnd
Prognose (DE-588)4047390-9 gnd
Zeitreihenanalyse (DE-588)4067486-1 gnd
subject_GND (DE-588)4066399-1
(DE-588)4047390-9
(DE-588)4067486-1
title Applied economic forecasting using time series methods
title_auth Applied economic forecasting using time series methods
title_exact_search Applied economic forecasting using time series methods
title_full Applied economic forecasting using time series methods Eric Ghysels (University of North Carolina, Chapel Hill, United States), Massimiliano Marcellino (Bocconi University, Milan, Italy)
title_fullStr Applied economic forecasting using time series methods Eric Ghysels (University of North Carolina, Chapel Hill, United States), Massimiliano Marcellino (Bocconi University, Milan, Italy)
title_full_unstemmed Applied economic forecasting using time series methods Eric Ghysels (University of North Carolina, Chapel Hill, United States), Massimiliano Marcellino (Bocconi University, Milan, Italy)
title_short Applied economic forecasting using time series methods
title_sort applied economic forecasting using time series methods
topic Wirtschaft (DE-588)4066399-1 gnd
Prognose (DE-588)4047390-9 gnd
Zeitreihenanalyse (DE-588)4067486-1 gnd
topic_facet Wirtschaft
Prognose
Zeitreihenanalyse
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030314614&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT ghyselseric appliedeconomicforecastingusingtimeseriesmethods
AT marcellinomassimiliano appliedeconomicforecastingusingtimeseriesmethods