Unstructured data analytics how to improve customer acquisition, customer retention, and fraud detection and prevention

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Isson, Jean-Paul 1971- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York Wiley [2018]
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV044912890
003 DE-604
005 20180619
007 t
008 180419s2018 a||| |||| 00||| eng d
020 |a 9781119129752  |9 978-1-119-12975-2 
035 |a (OCoLC)1036343096 
035 |a (DE-599)BVBBV044912890 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-355  |a DE-1049 
084 |a ST 530  |0 (DE-625)143679:  |2 rvk 
100 1 |a Isson, Jean-Paul  |d 1971-  |e Verfasser  |0 (DE-588)1027729894  |4 aut 
245 1 0 |a Unstructured data analytics  |b how to improve customer acquisition, customer retention, and fraud detection and prevention  |c Jean Paul Isson 
264 1 |a New York  |b Wiley  |c [2018] 
300 |a xxiii, 408 Seiten  |b Illustrationen 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Unternehmen  |0 (DE-588)4061963-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Big Data  |0 (DE-588)4802620-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Datenanalyse  |0 (DE-588)4123037-1  |2 gnd  |9 rswk-swf 
653 0 |a Big data 
653 0 |a Data mining 
653 0 |a Electronic data processing 
653 0 |a Business intelligence 
653 0 |a Customer relations 
689 0 0 |a Unternehmen  |0 (DE-588)4061963-1  |D s 
689 0 1 |a Datenanalyse  |0 (DE-588)4123037-1  |D s 
689 0 2 |a Big Data  |0 (DE-588)4802620-7  |D s 
689 0 |C b  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe, PDF  |z 978-1-119-32550-5 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe, EPUB  |z 978-1-119-32549-9 
856 4 2 |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030306369&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-030306369 

Datensatz im Suchindex

_version_ 1804178476289228800
adam_text Foreword xiii Preface xv Acknowledgments xix Chapter t The Age of Advanced Business Analytics 1 Introduction I Why the Analytics Hype Today? 5 A Short History of Data Analytics 15 What Is the Analytics Age? 22 Interview with Wayne Thompson, Chief Data Scientist at SAS Institute 23 Key Takeaways 28 Notes 29 Further Reading 30 Chapter 2 Unstructured Data Analytics: The Next Frontier of Analytics innovation 33 Introduction 33 What Is UD A? 35 Why UD A Today? 3 9 The UD A Industry 48 UsesofUDA 51 How UDA Works 52 Why UDA Is the Next Analytical Frontier? 54 Interview with Seth Grimes on Analytics as the Next Business Frontier 58 UDA Success Stories 60 The Golden Age of UDA 64 Key Takeaways 65 Notes 66 Further Reading 67 Chapter 3 The Framework to Put UDA to Work 69 Introduction 69 Why Have a Framework to Analyze Unstructured Data? 70 vu viii ► CONTENTS The IMPACT Cycle Applied to Unstructured Data 72 Text Parsing Example 81 Interview with Cindy Forbes, Chief Analytics Officer and Executive Vice President at Manulife Financial 84 Case Study 90 Key Takeaways 106 Notes 107 Further Reading 108 Chapter 4 How to increase Customer Acquisition and Retention with UDA 109 The Voice of the Customer: A Goldmine for Understanding Customers 109 Why Should You Care about UDA for Customer Acquisition and Retention? Ill Predictive Models and Online Marketing 117 How Does UDA Applied to Customer Acquisition Work? 118 The Power of UDA for E-mail Response and Ad Optimization 124 How to Drive More Conversion and Engagement with UDA Applied to Content 124 How UDA Applied to Customer Retention (Churn) Works 125 What Is UDA Applied to Customer Acquisition? 129 What Is UDA Applied to Customer Retention (Churn)? 135 The Power of UDA Powered by Virtual Agent 136 Benefits of a Virtual Agent or AI Assistant for Customer Experience 138 Benefits and Case Studies 139 Applying UDA to Your Social Media Presence and Native Ads to Increase Acquisitions 151 Key Takeaways 153 Notes 154 Chapter 5 The Power of UDA to improve Fraud Detection and Prevention 157 Introduction 157 Why Should You Care about UDA for Fraud Detection and Prevention? 159 Benefits of UDA 163 What Is UDA for Fraud? 168 How UDA Works in Fraud Detection and Prevention 170 CONTENTS iX UDA Framework for Fraud Detection and Prevention: Insurance 173 Major Fraud Detection and Prevention Techniques 176 Best Practices Using UDA for Fraud Detection and Prevention 179 Interview with Vishwa Kolia, Assistant Vice President Advanced Analytics at John Hancock Financial Services 182 Interview with Diane Deperrois, General Manager South-East and Overseas Region, AXA 184 Key Takeaways 187 Notes 189 Further Reading 189 Chapter 6 The Power of UDA in Human Capital Management 191 Why Should You Care about UDA in Human Resources? 191 What Is UDA in HR? 193 What Is UDA in HR Really About? 195 The Power of UDA in Online Recruitment: Supply and Demand Equation 196 The Power of UDA in Talent Sourcing Analytics 197 The Power of UDA in Talent Acquisition Analytics 205 Artificial Intelligence as a Hiring Assistant 206 The Power of UDA in Talent Retention 207 Interview with Arun Chidambaram, Director of Global workforce intelligence, Pfizer 208 Employee Performance Appraisal Data Review Feedback 210 How UDA Works 211 Benefits of UDA in HR 212 Case Studies 213 Interview with Stephani Kingsmill, Executive Vice President and Chief Human Resource Officer, Manulife 213 Key Takeaways 216 Further Reading 217 Chapter 7 The Power of UDA in the Legal Industry 219 Why Should You Care about UDA in Legal Services? 219 What Is UDA Applied to Legal Services? 224 How Does It Work? 224 Benefits and Challenges 231 Key Takeaways 234 Notes 235 Further Reading 23 5 X ^CONTENTS Chapter 8 The Power of UDA in Healthcare and Medical Research 237 Why Should You Care about UDA in Healthcare? 237 What s UDA in Healthcare? 245 How UDA Works 250 Benefits 255 Interview with Mr. François Laviolette, Professor of Computer Science/Director of Big Data Research Centre at Laval University (QC) Canada 257 Interview with Paul Zikopolous, Vice President Big Data Cognitive System at IBM 258 Case Study 262 Key Takeaways 263 Notes 264 Further Reading 265 Chapter 9 The Power of UDA in Product and Service Development 267 Why Should You Care about UDA for Product and Service Development? 267 UDA and Big Data Analytics 268 Interview with Fiona McNeill, Global Product Marketing Manager at SAS Institute 283 What Is UDA Applied to Product Development? 297 How Is UDA Applied to Product Development? 300 How UDA Applied to Product Development Works 301 Key Takeaways 303 Notes 304 Chapter 10 The Power of UDA in National Security 307 National Security: Playground for UDA or Civil Liberty Threat? 307 What Is UDA for National Security? 310 Data Sources of the NS A 310 Why UDA for National Security? 314 Case Studies 320 How UDA Works 322 Key Takeaways 323 Notes 324 Further Reading 325 Chapter 11 The Power of UDA in Sports 327 The Short History of Sports Analytics: Money ball 328 Why Should You Care about UDA in Sports? 333 CONTENTS ◄ Xi What Is UDA in Sports? 338 How It Works 342 Interview with Winston Lin, Director of Strategy and Analytics for the Houston Rockets 343 Key Takeaways 347 Notes 347 Further Reading 348 Chapter 12 The Future of Analytics 349 Harnessing These Evolving Technologies Will Generate Benefits 3 50 Data Becomes Less Valuable and Analytics Becomes Mainstream 353 Predictive Analytics, AI, Machine Learning, and Deep Learning Become the New Standard 355 People Analytics Becomes a Standard Department in Businesses 3 58 UDA Becomes More Prevalent in Corporations and Businesses 359 Cognitive Analytics Expansion 3 59 The Internet of Things Evolves to the Analytics of Things 360 MOOCs and Open Source Software and Applications Will Continue to Explode 361 Blockchain and Analytics Will Solve Social Problems 362 Human-Centered Computing Will Be Normalized 364 Data Governance and Data Security Will Remain the Number-One Risk and Threat 365 Key Takeaways 366 Notes 367 Further Reading 367 Appendix A Tech Corner Details 369 Singular Value Decomposition (SVD) Algorithm and Applications 370 Principal Component Analysis (PCA) and Applications 382 PC A Application to Facial Recognition: EigenFaces 392 QR Factorization Algorithm and Applications 394 Note 399 Further Reading 399 About The Author 401 index 403
any_adam_object 1
author Isson, Jean-Paul 1971-
author_GND (DE-588)1027729894
author_facet Isson, Jean-Paul 1971-
author_role aut
author_sort Isson, Jean-Paul 1971-
author_variant j p i jpi
building Verbundindex
bvnumber BV044912890
classification_rvk ST 530
ctrlnum (OCoLC)1036343096
(DE-599)BVBBV044912890
discipline Informatik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01843nam a2200445 c 4500</leader><controlfield tag="001">BV044912890</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180619 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180419s2018 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119129752</subfield><subfield code="9">978-1-119-12975-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1036343096</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044912890</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-1049</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Isson, Jean-Paul</subfield><subfield code="d">1971-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1027729894</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unstructured data analytics</subfield><subfield code="b">how to improve customer acquisition, customer retention, and fraud detection and prevention</subfield><subfield code="c">Jean Paul Isson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Wiley</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiii, 408 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unternehmen</subfield><subfield code="0">(DE-588)4061963-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Business intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Customer relations</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unternehmen</subfield><subfield code="0">(DE-588)4061963-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-1-119-32550-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-1-119-32549-9</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=030306369&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030306369</subfield></datafield></record></collection>
id DE-604.BV044912890
illustrated Illustrated
indexdate 2024-07-10T08:04:34Z
institution BVB
isbn 9781119129752
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030306369
oclc_num 1036343096
open_access_boolean
owner DE-355
DE-BY-UBR
DE-1049
owner_facet DE-355
DE-BY-UBR
DE-1049
physical xxiii, 408 Seiten Illustrationen
publishDate 2018
publishDateSearch 2018
publishDateSort 2018
publisher Wiley
record_format marc
spelling Isson, Jean-Paul 1971- Verfasser (DE-588)1027729894 aut
Unstructured data analytics how to improve customer acquisition, customer retention, and fraud detection and prevention Jean Paul Isson
New York Wiley [2018]
xxiii, 408 Seiten Illustrationen
txt rdacontent
n rdamedia
nc rdacarrier
Unternehmen (DE-588)4061963-1 gnd rswk-swf
Big Data (DE-588)4802620-7 gnd rswk-swf
Datenanalyse (DE-588)4123037-1 gnd rswk-swf
Big data
Data mining
Electronic data processing
Business intelligence
Customer relations
Unternehmen (DE-588)4061963-1 s
Datenanalyse (DE-588)4123037-1 s
Big Data (DE-588)4802620-7 s
b DE-604
Erscheint auch als Online-Ausgabe, PDF 978-1-119-32550-5
Erscheint auch als Online-Ausgabe, EPUB 978-1-119-32549-9
Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030306369&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Isson, Jean-Paul 1971-
Unstructured data analytics how to improve customer acquisition, customer retention, and fraud detection and prevention
Unternehmen (DE-588)4061963-1 gnd
Big Data (DE-588)4802620-7 gnd
Datenanalyse (DE-588)4123037-1 gnd
subject_GND (DE-588)4061963-1
(DE-588)4802620-7
(DE-588)4123037-1
title Unstructured data analytics how to improve customer acquisition, customer retention, and fraud detection and prevention
title_auth Unstructured data analytics how to improve customer acquisition, customer retention, and fraud detection and prevention
title_exact_search Unstructured data analytics how to improve customer acquisition, customer retention, and fraud detection and prevention
title_full Unstructured data analytics how to improve customer acquisition, customer retention, and fraud detection and prevention Jean Paul Isson
title_fullStr Unstructured data analytics how to improve customer acquisition, customer retention, and fraud detection and prevention Jean Paul Isson
title_full_unstemmed Unstructured data analytics how to improve customer acquisition, customer retention, and fraud detection and prevention Jean Paul Isson
title_short Unstructured data analytics
title_sort unstructured data analytics how to improve customer acquisition customer retention and fraud detection and prevention
title_sub how to improve customer acquisition, customer retention, and fraud detection and prevention
topic Unternehmen (DE-588)4061963-1 gnd
Big Data (DE-588)4802620-7 gnd
Datenanalyse (DE-588)4123037-1 gnd
topic_facet Unternehmen
Big Data
Datenanalyse
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030306369&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT issonjeanpaul unstructureddataanalyticshowtoimprovecustomeracquisitioncustomerretentionandfrauddetectionandprevention