Singular limits in thermodynamics of viscous fluids

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Feireisl, Eduard 1957- (VerfasserIn), Novotný, Antonín 1959-2021 (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: [Basel] Birkhäuser [2017]
Ausgabe:second edition
Schriftenreihe:Advances in Mathematical Fluid Mechanics
Schlagworte:
Online-Zugang:Inhaltstext
http://www.springer.com/
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV044877036
003 DE-604
005 20221020
007 t
008 180321s2017 sz |||| 00||| eng d
016 7 |a 1135582483  |2 DE-101 
020 |a 9783319637808  |c Book : circa EUR 117.69 (DE) (freier Preis), circa EUR 120.99 (AT) (freier Preis), circa CHF 121.00 (freier Preis)  |9 978-3-319-63780-8 
020 |a 3319637800  |9 3-319-63780-0 
024 3 |a 9783319637808 
028 5 2 |a Bestellnummer: 978-3-319-63780-8 
028 5 2 |a Bestellnummer: 86844439 
035 |a (OCoLC)1030903869 
035 |a (DE-599)DNB1135582483 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a sz  |c XA-CH 
049 |a DE-29T  |a DE-20  |a DE-83  |a DE-355 
084 |a SK 540  |0 (DE-625)143245:  |2 rvk 
084 |a UF 4000  |0 (DE-625)145577:  |2 rvk 
084 |a 76Nxx  |2 msc 
084 |a 510  |2 sdnb 
084 |a 35Q30  |2 msc 
084 |a 93C20  |2 msc 
100 1 |a Feireisl, Eduard  |d 1957-  |0 (DE-588)137457685  |4 aut 
245 1 0 |a Singular limits in thermodynamics of viscous fluids  |c Eduard Feireisl ; Antonín Novotný 
250 |a second edition 
264 1 |a [Basel]  |b Birkhäuser  |c [2017] 
264 4 |c © 2017 
300 |a xlii, 524 Seiten  |c 23.5 cm x 15.5 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Advances in Mathematical Fluid Mechanics 
650 0 7 |a Schwache Lösung  |0 (DE-588)4131068-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Viskose Strömung  |0 (DE-588)4226965-9  |2 gnd  |9 rswk-swf 
650 0 7 |a System von partiellen Differentialgleichungen  |0 (DE-588)4116672-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Hydromechanik  |0 (DE-588)4026312-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Kompressible Strömung  |0 (DE-588)4032018-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematik  |0 (DE-588)4037944-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Thermodynamik  |0 (DE-588)4059827-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Wärmeleitung  |0 (DE-588)4064192-2  |2 gnd  |9 rswk-swf 
653 |a PHD 
653 |a Dissipation 
653 |a Magnetohydrodynamics 
653 |a Navier-Stokes-Fourier 
653 |a Nonlinear Systems 
653 |a Partial Differential Equations 
653 |a Rhe 
653 |a Single Limits 
653 |a Thermodynamics 
653 |a Viscous Fluids 
653 |a fluid dynamics 
653 |a fluid mechanics 
653 |a partial differential equation 
689 0 0 |a Viskose Strömung  |0 (DE-588)4226965-9  |D s 
689 0 1 |a Kompressible Strömung  |0 (DE-588)4032018-2  |D s 
689 0 2 |a Wärmeleitung  |0 (DE-588)4064192-2  |D s 
689 0 3 |a System von partiellen Differentialgleichungen  |0 (DE-588)4116672-3  |D s 
689 0 4 |a Schwache Lösung  |0 (DE-588)4131068-8  |D s 
689 0 |5 DE-604 
689 1 0 |a Hydromechanik  |0 (DE-588)4026312-5  |D s 
689 1 1 |a Thermodynamik  |0 (DE-588)4059827-5  |D s 
689 1 2 |a Mathematik  |0 (DE-588)4037944-9  |D s 
689 1 |8 1\p  |5 DE-604 
700 1 |a Novotný, Antonín  |d 1959-2021  |0 (DE-588)143304194  |4 aut 
710 2 |a Springer International Publishing  |0 (DE-588)1064344704  |4 pbl 
776 0 8 |i Elektronische Reproduktion  |z 9783319637815 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 9783319637815 
780 0 0 |i Vorangegangen ist  |z 9783764388423 
856 4 2 |m X:MVB  |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=5cd9442ad86148fea084f1d679c10291&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m X:MVB  |u http://www.springer.com/ 
856 4 2 |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030271353&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-030271353 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

_version_ 1804178412356501504
adam_text Contents 1 Fluid Flow Modeling.................................................................................. 1.1 1.2 1.3 1.4 2 Fluids in Continuum Mechanics................................................. Balance Laws............................................................................... Field Equations ............................................................................ 1.3.1 Conservation of Mass..................................................... 1.3.2 Balance of Linear Momentum....................................... 1.3.3 Total Energy.................................................................... 1.3.4 Entropy........................................................................... Constitutive Relations.................................................................. 1.4.1 Molecular Energy and Transport Terms...................... 1.4.2 State Equations............................................................... 1.4.3 Effect of Thermal Radiation.......................................... 1.4.4 Typical Values of Some PhysicalCoefficients.............. Weak Solutions, A Priori Estimates........................................................ 2.1 2.2 Weak Formulation....................................................................... 2.1.1 Equation of Continuity.................................................. 2.1.2 Balance of Linear Momentum...................................... 2.1.3 Balance of Total Energy ................................................ 2.1.4 Entropy Production......................................................... 2.1.5 Constitutive Relations..................................................... A Priori Estimates ....................................................................... 2.2.1 Total Mass Conservation................................................ 2.2.2 Energy Estimates............................................................ 2.2.3 Estimates Based on Second Law of Thermodynamics........................................................... 2.2.4 Positivity of the Absolute Temperature........................ 2.2.5 Pressure Estimates ......................................................... 2.2.6 Pressure Estimates, an Alternative Approach............... 1 2 4 8 9 10 12 13 14 14 15 17 18 21 23 24 24 26 26 27 28 28 28 30 36 39 44 xxxvii xxxviii Contents Existence Theory...................................................................................... 3.1 Hypotheses..................................................................................... 3.2 Structural Properties of Constitutive Functions............................ 3 Main Existence Result................................................................... 3.3.1 Approximation Scheme.................................................. 3.4 Solvability of the Approximate System......................................... 3.4.1 Approximate Continuity Equation ................................. 3.4.2 Approximate Internal Energy Equation..................... 3.4.3 Local Solvability of the Approximate Problem........... 3.4.4 Uniform Estimates and Global Existence.................... 3.5 Faedo-Galerkin Limit............................................................... 3.5.1 Estimates Independent of the Dimension of Faedo-Galerkin Approximations............. 79 3.5.2 Limit Passage in the Approximate Continuity Equation....................................................... 82 3.5.3 Strong Convergence of the Approximate Temperatures and the Limit in the Entropy Equation....................................................... 85 3.5.4 Limit in the Approximate Momentum Equation......... 3.5.5 The Limit System Resulting from the Faedo-Galerkin Approximation....................... 94 3.5.6 The Entropy Production Rate Represented by a Positive Measure....................................... 96 3.6 Artificial Diffusion Limit............................................................... 3.6.1 Uniform Estimates and Limit in the Approximate Continuity Equation........................................................ 3.6.2 Entropy Balance and Strong Convergence of the Approximate Temperatures................... 3.6.3 Uniform Pressure Estimates........................................... 3.6.4 Limit in the Approximate Momentum Equation and in the Energy Balance............................... 3.6.5 Strong Convergence of the Densities.............................. 3.6.6 Artificial Diffusion Asymptotic Limit............................. 3.7 Vanishing Artificial Pressure.................................................... 3.7.1 Uniform Estimates......................................................... 3.7.2 Asymptotic Limit for Vanishing Artificial Pressure ... 3.7.3 Entropy Balance and Pointwise Convergence of the Temperature.......................................... 125 3.7.4 Pointwise Convergence of the Densities......................... 3.7.5 Oscillations Defect Measure.......................................... 3.8 Regularity Properties of the Weak Solutions............................... 3.3 4 Asymptotic Analysis: An Introduction..................................................... 4.1 4.2 Scaling and Scaled Equations...................................................... Low Mach Number Limits.......................................................... 49 50 53 57 58 60 61 63 71 73 78 93 97 97 100 106 108 109 118 119 120 122 129 135 140 145 147 149 xxxix Contents Strongly Stratified Flows.............................................................. Acoustic Waves............................................................................. 4.4.1 Low Stratification.......................................................... 4.4.2 Strong Stratification....................................................... 4.4.3 Attenuation of Acoustic Waves..................................... Acoustic Analogies....................................................................... Initial Data..................................................................................... A General Approach to Singular Limits for the Full Navier-Stokes-Fourier System ...................................... 161 151 154 154 156 156 158 160 5 Singular Limits: Low Stratification...................................................... 5.1 Hypotheses and Global Existence for the Primitive System .... 5.1.1 Hypotheses.................................................................... 5.1.2 Global-in-Time Solutions............................................. 5.2 Dissipation Equation, Uniform Estimates................................... 5.2.1 Conservation of Total Mass........................................... 5.2.2 Total Dissipation Balance and Related Estimates ....... 5.2.3 Uniform Estimates......................................................... 5.3 Convergence................................................................................... 5.3.1 Equation of Continuity................................................... 5.3.2 Entropy Balance............................................................. 5.3.3 Momentum Equation...................................................... 5.4 Convergence of the Convective Term.......................................... 5.4.1 Helmholtz Decomposition............................................. 5.4.2 Compactness of the Solenoidal Part.............................. 5.4.3 Acoustic Equation.......................................................... 5.4.4 Formal Analysis of Acoustic Equation......................... 5.4.5 Spectral Analysis of the Wave Operator...................... 5.4.6 Reduction to a Finite Number of Modes...................... 5.4.7 Weak Limit of the Convective Term: Time Lifting .... 5.5 Conclusion: Main Result.............................................................. 5.5.1 Weak Formulation of the Target Problem..................... 5.5.2 Main Result.................................................................... 5.5.3 Determining the Initial Temperature Distribution...... 5.5.4 Energy Inequality for the Limit System....................... 167 170 171 172 174 174 175 179 182 184 185 188 192 193 194 196 199 202 203 205 208 208 210 211 212 6 Stratified Fluids......................................................................................... 6.1 Motivation...................................................................................... 6.2 Primitive System............................................................................ 6.2.1 Field Equations............................................................... 6.2.2 Constitutive Relations..................................................... 6.2.3 Scaling............................................................................. 6.3 Asymptotic Limit.......................................................................... 6.3.1 Static States..................................................................... 6.3.2 Solutions to the Primitive System................................. 6.3.3 Main Result..................................................................... 221 221 222 222 223 225 227 227 228 230 4.3 4.4 4.5 4.6 4.7 xl Contents 6.4 6.5 6.6 6.7 7 Uniform Estimates........................................................................ 6.4.1 Dissipation Equation, Energy Estimates...................... 6.4.2 Pressure Estimates ......................................................... Convergence Towards the Target System.................................... 6.5.1 Anelastic Constraint........................................................ 6.5.2 Determining the Pressure............................................... 6.5.3 Driving Force................................................................... 6.5.4 Momentum Equation....................................................... Analysis of the Acoustic Waves..................................................... 6.6.1 Acoustic Equation........................................................... 6.6.2 Spectral Analysis of the Wave Operator....................... 6.6.3 Convergence of the Convective Term........................... Asymptotic Limit in the Entropy Balance................................... Interaction of Acoustic Waves with Boundary..................................... 7.1 Problem Formulation..................................................................... 7.1.1 Field Equations............................................................... 7.1.2 Physical Domain and Boundary Conditions............... 7.2 Main Result: The No-Slip Boundary Conditions....................... 7.2.1 Preliminaries: Global Existence................................... 7.2.2 Compactness of the Family of Velocities.................... 7.3 Uniform Estimates......................................................................... 7.4 Analysis of Acoustic Waves.......................................................... 7.4.1 Acoustic Equation.......................................................... 7.4.2 Spectral Analysis of the Acoustic Operator................. 7.5 Strong Convergence of the Velocity Field................................. 7.5.1 Compactness of the Solenoidal Component................ 7.5.2 Reduction to a Finite Number of Modes...................... 7.5.3 Strong Convergence....................................................... 7.6 Asymptotic Limit on Domains with Oscillatory Boundaries and Complete Slip Boundary Conditions. 297 7.7 Uniform Bounds............................................................................ 7.8 Convergence of the Velocity Trace on Oscillatory Boundary... 7.9 Strong Convergence of the Velocity Field Revisited ................. 7.9.1 Solenoidal Component.................................................. 7.9.2 Acoustic Waves.............................................................. 7.9.3 Strong Convergence of the Gradient Component........ 7.10 Concluding Remarks...................................................................... 8 Problems on Large Domains.................................................................... 8.1 8.2 8.3 Primitive System........................................................................... Oberbeck-Boussinesq Approximation in Exterior Domains ... Uniform Estimates........................................................................ 8.3.1 Static Solutions.............................................................. 8.3.2 Estimates Based on the Hypothesis of Thermodynamic Stability............................... 319 233 234 240 242 243 243 246 248 249 250 252 254 259 263 266 266 267 269 270 272 273 275 275 278 288 289 290 291 300 301 304 304 305 308 311 313 313 317 318 318 xli Contents Estimates Based on the Specific Form of Constitutive Relations..................................... 322 Convergence, Part I....................................................................... Acoustic Equation ......................................................................... 8.5.1 Boundedness of the Data................................................ 8.5.2 Acoustic Equation Revisited.......................................... Regularization and Extension to Ω ............................................. 8.6.1 Regularization................................................................. 8.6.2 Reduction to Smooth Data............................................. Dispersive Estimates and Time Decay of Acoustic Waves ....... 8.7.1 Compactness of the Solenoidal Components............... 8.7.2 Analysis of Acoustic Waves.......................................... 8.7.3 Decay Estimates via RAGE Theorem........................... Convergence to the Target System............................................... Dispersive Estimates Revisited..................................................... 8.9.1 RAGE Theorem via Spectral Measures........................ 8.9.2 Decay Estimates via Kato’s Theorem........................... Conclusion.................................................................................... 8.3.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 9 Vanishing Dissipation Limits..................................................................... 9.1 9.2 9.3 9.4 9.5 10 Problem Formulation................................................................... 9.1.1 Physical Space and Boundary Conditions.................... 9.1.2 Initial Data........................................................................ 9.1.3 Target Problem................................................................ 9.1.4 Strategy of the Proof of Stability of Smooth Solutions to the TargetProblem..................... 374 Relative Energy Inequality........................................................... Uniform Estimates......................................................................... Well-Prepared Initial Data............................................................ Ill-Prepared Initial Data................................................................. 9.5.1 Acoustic Equation........................................................... 9.5.2 Transport Equation.......................................................... 9.5.3 Stability via the Relative Energy Inequality................. 9.5.4 Conclusion....................................................................... Acoustic Analogies....................................................................................... 10.1 10.2 10.3 10.4 10.5 Asymptotic Analysis and the Limit System................................ Acoustic Equation Revisited........................................................ Two-Scale Convergence............................................................... 10.3.1 Approximate Methods.................................................. Lighthill’s Acoustic Analogy in the Low Mach Number Regime............................................................................ 422 10.4.1 Ill-Prepared Data........................................................... 10.4.2 Well-Prepared Data ....................................................... Concluding Remarks..................................................................... 325 326 329 333 335 335 338 349 350 350 355 358 361 361 363 367 369 370 371 372 372 374 378 381 389 389 391 392 406 409 410 412 416 421 422 423 426 xiii Contents Appendix ........................................................................................................ 11 Spectral Theory of Self-Adjoint Operators................................. Mollifiers........................................................................................ Basic Properties of Some Elliptic Operators .............................. 11.3.1 A Priori Estimates.......................................................... 11.3.2 Fredholm Alternative.................................................... 11.3.3 Spectrum of a Generalized Laplacian.......................... 11.3.4 Neumann Laplacian on Unbounded Domains............ 11.4 Normal Traces.............................................................................. 11.5 Singular and Weakly Singular Operators.................................. 11.6 The Inverse of the div-Operator (Bogovskii Formula)............ 11.7 Helmholtz Decomposition.......................................................... 11.8 Function Spaces of Hydrodynamics.......................................... 11.9 Poincaré Type Inequalities ......................................................... 11.10 Korn Type Inequalities................................................................. 11.11 Estimating Vu by Means of di vru and curicu............................ 11.12 Weak Convergence and Monotone Functions........................... 11.13 Weak Convergence and Convex Functions............................... 11.14 Div-Curl Lemma.......................................................................... 11.15 Maximal Regularity for Parabolic Equations............................. 11.16 Quasilinear Parabolic Equations................................................. 11.17 Basic Properties of the Riesz Transform and Related Operators.......................................................................... 486 11.18 Commutators Involving Riesz Operators................................... 11.19 Renormalized Solutions to the Equation of Continuity............ 11.20 Transport Equation and the Euler System .................................. 11.1 11.2 11.3 429 429 432 433 434 437 438 440 443 447 448 458 460 462 464 469 471 476 480 482 484 489 492 499 Fluid Flow Modeling................................................................... Mathematical Theory of Weak Solutions................................... Existence Theory.......................................................................... Analysis of Singular Limits........................................................ Propagation of Acoustic Waves.................................................. Relative Energy, Inviscid Limits................................................. 501 501 502 503 503 504 505 Bibliography.......................................................................................................... 507 Index........................................................................................................................ 519 12 Bibliographical Remarks........................................................................... 12.1 12.2 12.3 12.4 12.5 12.6
any_adam_object 1
author Feireisl, Eduard 1957-
Novotný, Antonín 1959-2021
author_GND (DE-588)137457685
(DE-588)143304194
author_facet Feireisl, Eduard 1957-
Novotný, Antonín 1959-2021
author_role aut
aut
author_sort Feireisl, Eduard 1957-
author_variant e f ef
a n an
building Verbundindex
bvnumber BV044877036
classification_rvk SK 540
UF 4000
ctrlnum (OCoLC)1030903869
(DE-599)DNB1135582483
discipline Physik
Mathematik
edition second edition
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03822nam a2200913 c 4500</leader><controlfield tag="001">BV044877036</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221020 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180321s2017 sz |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1135582483</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319637808</subfield><subfield code="c">Book : circa EUR 117.69 (DE) (freier Preis), circa EUR 120.99 (AT) (freier Preis), circa CHF 121.00 (freier Preis)</subfield><subfield code="9">978-3-319-63780-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3319637800</subfield><subfield code="9">3-319-63780-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783319637808</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 978-3-319-63780-8</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 86844439</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1030903869</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1135582483</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4000</subfield><subfield code="0">(DE-625)145577:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">76Nxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35Q30</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">93C20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feireisl, Eduard</subfield><subfield code="d">1957-</subfield><subfield code="0">(DE-588)137457685</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Singular limits in thermodynamics of viscous fluids</subfield><subfield code="c">Eduard Feireisl ; Antonín Novotný</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Basel]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xlii, 524 Seiten</subfield><subfield code="c">23.5 cm x 15.5 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in Mathematical Fluid Mechanics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwache Lösung</subfield><subfield code="0">(DE-588)4131068-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Viskose Strömung</subfield><subfield code="0">(DE-588)4226965-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">System von partiellen Differentialgleichungen</subfield><subfield code="0">(DE-588)4116672-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hydromechanik</subfield><subfield code="0">(DE-588)4026312-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kompressible Strömung</subfield><subfield code="0">(DE-588)4032018-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Thermodynamik</subfield><subfield code="0">(DE-588)4059827-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wärmeleitung</subfield><subfield code="0">(DE-588)4064192-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">PHD</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dissipation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Magnetohydrodynamics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Navier-Stokes-Fourier</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nonlinear Systems</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Rhe</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Single Limits</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Viscous Fluids</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fluid dynamics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fluid mechanics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">partial differential equation</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Viskose Strömung</subfield><subfield code="0">(DE-588)4226965-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kompressible Strömung</subfield><subfield code="0">(DE-588)4032018-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Wärmeleitung</subfield><subfield code="0">(DE-588)4064192-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">System von partiellen Differentialgleichungen</subfield><subfield code="0">(DE-588)4116672-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Schwache Lösung</subfield><subfield code="0">(DE-588)4131068-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hydromechanik</subfield><subfield code="0">(DE-588)4026312-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Thermodynamik</subfield><subfield code="0">(DE-588)4059827-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Novotný, Antonín</subfield><subfield code="d">1959-2021</subfield><subfield code="0">(DE-588)143304194</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Springer International Publishing</subfield><subfield code="0">(DE-588)1064344704</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Elektronische Reproduktion</subfield><subfield code="z">9783319637815</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">9783319637815</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">Vorangegangen ist</subfield><subfield code="z">9783764388423</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=5cd9442ad86148fea084f1d679c10291&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.springer.com/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=030271353&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030271353</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV044877036
illustrated Not Illustrated
indexdate 2024-07-10T08:03:34Z
institution BVB
institution_GND (DE-588)1064344704
isbn 9783319637808
3319637800
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030271353
oclc_num 1030903869
open_access_boolean
owner DE-29T
DE-20
DE-83
DE-355
DE-BY-UBR
owner_facet DE-29T
DE-20
DE-83
DE-355
DE-BY-UBR
physical xlii, 524 Seiten 23.5 cm x 15.5 cm
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher Birkhäuser
record_format marc
series2 Advances in Mathematical Fluid Mechanics
spelling Feireisl, Eduard 1957- (DE-588)137457685 aut
Singular limits in thermodynamics of viscous fluids Eduard Feireisl ; Antonín Novotný
second edition
[Basel] Birkhäuser [2017]
© 2017
xlii, 524 Seiten 23.5 cm x 15.5 cm
txt rdacontent
n rdamedia
nc rdacarrier
Advances in Mathematical Fluid Mechanics
Schwache Lösung (DE-588)4131068-8 gnd rswk-swf
Viskose Strömung (DE-588)4226965-9 gnd rswk-swf
System von partiellen Differentialgleichungen (DE-588)4116672-3 gnd rswk-swf
Hydromechanik (DE-588)4026312-5 gnd rswk-swf
Kompressible Strömung (DE-588)4032018-2 gnd rswk-swf
Mathematik (DE-588)4037944-9 gnd rswk-swf
Thermodynamik (DE-588)4059827-5 gnd rswk-swf
Wärmeleitung (DE-588)4064192-2 gnd rswk-swf
PHD
Dissipation
Magnetohydrodynamics
Navier-Stokes-Fourier
Nonlinear Systems
Partial Differential Equations
Rhe
Single Limits
Thermodynamics
Viscous Fluids
fluid dynamics
fluid mechanics
partial differential equation
Viskose Strömung (DE-588)4226965-9 s
Kompressible Strömung (DE-588)4032018-2 s
Wärmeleitung (DE-588)4064192-2 s
System von partiellen Differentialgleichungen (DE-588)4116672-3 s
Schwache Lösung (DE-588)4131068-8 s
DE-604
Hydromechanik (DE-588)4026312-5 s
Thermodynamik (DE-588)4059827-5 s
Mathematik (DE-588)4037944-9 s
1\p DE-604
Novotný, Antonín 1959-2021 (DE-588)143304194 aut
Springer International Publishing (DE-588)1064344704 pbl
Elektronische Reproduktion 9783319637815
Erscheint auch als Online-Ausgabe 9783319637815
Vorangegangen ist 9783764388423
X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=5cd9442ad86148fea084f1d679c10291&prov=M&dok_var=1&dok_ext=htm Inhaltstext
X:MVB http://www.springer.com/
Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030271353&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Feireisl, Eduard 1957-
Novotný, Antonín 1959-2021
Singular limits in thermodynamics of viscous fluids
Schwache Lösung (DE-588)4131068-8 gnd
Viskose Strömung (DE-588)4226965-9 gnd
System von partiellen Differentialgleichungen (DE-588)4116672-3 gnd
Hydromechanik (DE-588)4026312-5 gnd
Kompressible Strömung (DE-588)4032018-2 gnd
Mathematik (DE-588)4037944-9 gnd
Thermodynamik (DE-588)4059827-5 gnd
Wärmeleitung (DE-588)4064192-2 gnd
subject_GND (DE-588)4131068-8
(DE-588)4226965-9
(DE-588)4116672-3
(DE-588)4026312-5
(DE-588)4032018-2
(DE-588)4037944-9
(DE-588)4059827-5
(DE-588)4064192-2
title Singular limits in thermodynamics of viscous fluids
title_auth Singular limits in thermodynamics of viscous fluids
title_exact_search Singular limits in thermodynamics of viscous fluids
title_full Singular limits in thermodynamics of viscous fluids Eduard Feireisl ; Antonín Novotný
title_fullStr Singular limits in thermodynamics of viscous fluids Eduard Feireisl ; Antonín Novotný
title_full_unstemmed Singular limits in thermodynamics of viscous fluids Eduard Feireisl ; Antonín Novotný
title_short Singular limits in thermodynamics of viscous fluids
title_sort singular limits in thermodynamics of viscous fluids
topic Schwache Lösung (DE-588)4131068-8 gnd
Viskose Strömung (DE-588)4226965-9 gnd
System von partiellen Differentialgleichungen (DE-588)4116672-3 gnd
Hydromechanik (DE-588)4026312-5 gnd
Kompressible Strömung (DE-588)4032018-2 gnd
Mathematik (DE-588)4037944-9 gnd
Thermodynamik (DE-588)4059827-5 gnd
Wärmeleitung (DE-588)4064192-2 gnd
topic_facet Schwache Lösung
Viskose Strömung
System von partiellen Differentialgleichungen
Hydromechanik
Kompressible Strömung
Mathematik
Thermodynamik
Wärmeleitung
url http://deposit.dnb.de/cgi-bin/dokserv?id=5cd9442ad86148fea084f1d679c10291&prov=M&dok_var=1&dok_ext=htm
http://www.springer.com/
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030271353&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT feireisleduard singularlimitsinthermodynamicsofviscousfluids
AT novotnyantonin singularlimitsinthermodynamicsofviscousfluids
AT springerinternationalpublishing singularlimitsinthermodynamicsofviscousfluids