Applied thermodynamics of fluids

Gespeichert in:
Bibliographische Detailangaben
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge RSC Pub. c2010
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Includes bibliographical references and index
  • Machine generated contents note ch. 1 Introduction J. Peters
  • References
  • ch. 2 Fundamental Considerations Cor J. Peters
  • 2.1 Introduction
  • 2.2 Basic Thermodynamics
  • 2.2.1 Homogeneous Functions
  • 2.2.2 Thermodynamic Properties from Differentiation of Fundamental Equations
  • 2.3 Deviation Functions
  • 2.3.1 Residual Functions
  • 2.3.2 Evaluation of Residual Functions
  • 2.4 Mixing and Departure Functions
  • 2.4.1 Departure Functions with Temperature, Molar Volume and Composition as the Independent Variables
  • 2.4.2 Departure Functions with Temperature, Pressure and Composition as the Independent Variables
  • 2.5 Mixing and Excess Functions
  • 2.6 Partial Molar Properties
  • 2.7 Fugacity and Fugacity Coefficients
  • 2.8 Activity Coefficients
  • 2.9 The Phase Rule
  • 2.10 Equilibrium Conditions
  • 2.10.1 Phase Equilibria
  • 2.10.2 Chemical Equilibria
  • 2.11 Stability and the Critical State
  • 2.11.1 Densities and Fields
  • 2.11.2 Stability 2.11.3 Critical State
  • References
  • ch. 3 The Virial Equation of State J. P. Martin Trusler
  • 3.1 Introduction
  • 3.1.1 Temperature Dependence of the Virial Coefficients
  • 3.1.2 Composition Dependence of the Virial Coefficients
  • 3.1.3 Convergence of the Virial Series
  • 3.1.4 The Pressure Series
  • 3.2 Theoretical Background
  • 3.2.1 Virial Coefficients of Hard-Core-Square-Well Molecules
  • 3.3 Thermodynamic Properties of Gases
  • 3.3.1 Perfect-gas and Residual Properties
  • 3.3.2 Helmholtz Energy and Gibbs Energy
  • 3.3.3 Perfect-Gas Properties
  • 3.3.4 Residual Properties
  • 3.4 Estimation of Second and Third Virial Coefficients
  • 3.4.1 Application of Intermolecular Potential-energy Functions
  • 3.4.2 Corresponding-states Methods
  • References
  • ch. 4 Cubic and Generalized van der Waals Equations of State Ioannis G. Economou
  • 4
  • 4.2.3 The Soave, Redlich and Kwong Equation of State (1972)
  • 4.2.4 The Peng and Robinson Equation of State (1976)
  • 4.2.5 The Patel and Teja (PT) Equation of State (1982)
  • 4.2.6 The α Parameter
  • 4.2.7 Volume Translation
  • 4.2.8 The Elliott, Suresh and Donohue (ESD) Equation of State (1990)
  • 4.2.9 Higher-Order Equations of State Rooted to the Cubic Equations of State
  • 4.2.10 Extension of Cubic Equations of State to Mixtures
  • 4.3 Applications
  • 4.3.1 Pure Components
  • 4.3.2 Oil and Gas Industry
  • Hydrocarbons and Petroleum Fractions
  • 4.3.3 Chemical Industry
  • Polar and Hydrogen Bonding Fluids
  • 4.3.4 Polymers
  • 4.3.5 Transport Properties
  • 4.4 Conclusions
  • References
  • ch. 5 Mixing and Combining Rules Stanley I. Sandler
  • 5.1 Introduction
  • 5.2 The Virial Equation of State
  • 5.3 Cubic Equations of State
  • 5.3.1 Mixing Rules
  • 5.3.2 Combining Rules
  • 5.3.3 Non-Quadratic Mixing and Combining Rules
  • 5.3.4 Mixing Rules that Combine an Equation of State with an Activity-Coefficient Model 5.4 Multi-Parameter Equations of State
  • 5.4.1 Benedict, Webb, and Rubin Equation of State
  • 5.4.2 Generalization with the Acentric Factor
  • 5.4.3 Helmholtz-Function Equations of State
  • 5.5 Mixing Rules for Hard Spheres and Association
  • 5.5.1 Mixing and Combining Rules for SAFT
  • 5.5.2 Cubic Plus Association Equation of State
  • References
  • ch. 6 The Corresponding-States Principle James F. Ely
  • 6.1 Introduction
  • 6.2 Theoretical Considerations
  • 6.3 Determination of Shape Factors
  • 6.3.1 Other Reference Fluids
  • 6.3.2 Exact Shape Factors
  • 6.3.3 Shape Factors from Generalized Equations of State
  • 6.4 Mixtures
  • 6.4.1 van der Waals One-Fluid Theory
  • 6.4.2 Mixture Corresponding-States Relations
  • 6.5 Applications of Corresponding-States Theory
  • 6.5.1 Exte
  • 7.1 Introduction
  • 7.2 Thermodynamic Approach to Meso-Heterogeneous Systems
  • 7.2.1 Equilibrium Fluctuations
  • 7.2.2 Local Helmholtz Energy
  • 7.3 Applications of Meso-Thermodynamics
  • 7.3.1 Van der Waals Theory of a Smooth Interface
  • 7.3.2 Polymer Chain in a Dilute Solution
  • 7.3.3 Building a Nanoparticle Through Self Assembly
  • 7.3.4 Modulated Fluid Phases
  • 7.4 Meso-Thermodynamics of Criticality
  • 7.4.1 Critical Fluctuations
  • 7.4.2 Scaling Relations
  • 7.4.3 Near-Critical Interface
  • 7.4.4 Divergence of Tolman's Length
  • 7.5 Competition of Meso-Scales
  • 7.5.1 Crossover to Tricriticality in Polymer Solutions
  • 7.5.2 Tolman's Length in Polymer Solutions
  • 7.5.3 Finite-size Scaling
  • 7.6 Non-Equilibrium Meso-Thermodynamics of Fluid Phase Separation
  • 7.6.1 Relaxation of Fluctuations
  • 7.6.2 Critical Slowing Down
  • 7.6.3 Homogeneous Nucleation
  • 7.6.4 Spinodal Decomposition
  • 7.7 Conclusion
  • References
  • ch. 8 SAFT Associating Fluids and Fluid Mixtures Amparo Galindo 8.1 Introduction
  • 8.2 Statistical Mechanical Theories of Association and Wertheim's Theory
  • 8.3 SAFT Equations of State
  • 8.3.1 SAFT-HS and SAFT-HR
  • 8.3.2 Soft-SAFT
  • 8.3.3 SAFT-VR
  • 8.3.4 PC-SAFT
  • 8.3.5 Summary
  • 8.4 Extensions of the SAFT Approach
  • 8.4.1 Modelling the Critical Region
  • 8.4.2 Polar Fluids
  • 8.4.3 Ion-Containing Fluids
  • 8.4.4 Modelling Inhomogeneous Fluids
  • 8.4.5 Dense Phases: Liquid Crystals and Solids
  • 8.5 Parameter Estimation: Towards more Predictive Approaches
  • 8.5.1 Pure-component Parameter Estimation
  • 8.5.2 Use of Quantum Mechanics in SAFT Equations of State
  • 8.5.3 Unlike Binary Intermolecular Parameters
  • 8.6 SAFT Group-Contribution Approaches
  • 8.6.1 Homonuclear Group-Contribution Models in SAFT
  • 8.6.2 Heteronuclear Group Contribution Mo
  • 9.3 Approaches to Polydispersity
  • 9.3.1 The Pseudo-component Method
  • 9.3.2 Continuous Thermodynamics
  • 9.4 Application to Real Systems
  • 9.4.1 Polymer Systems
  • 9.4.2 Petroleum Fluids, Asphaltenes, Waxes and Other Applications
  • 9.5 Conclusions
  • References
  • ch. 10 Thermodynamic Behaviour of Fluids near Critical Points Mikhail A. Anisimov
  • 10.1 Introduction
  • 10.2 General Theory of Critical Behaviour
  • 10.2.1 Scaling Fields, Critical Exponents, and Critical Amplitudes
  • 10.2.2 Parametric Equation of State
  • 10.3 One-Component Fluids
  • 10.3.1 Simple Scaling
  • 10.3.2 Revised Scaling
  • 10.3.3 Complete Scaling
  • 10.3.4 Vapour-Liquid Equilibrium
  • 10.3.5 Symmetric Corrections to Scaling
  • 10.4 Binary Fluid Mixtures
  • 10.4.1 Isomorphic Critical Behaviour of Mixtures
  • 10.4.2 Incompressible Liquid Mixtures
  • 10.4.3 Weakly Compressible Liquid Mixtures
  • 10.4.4 Compressible Fluid Mixtures
  • 10.4.5 Dilute Solutions
  • 10.5 Crossover Critical Behaviour
  • 10.5.1 Crossover from Ising-like to Mean-Field Critical Behaviour 10.5.2 Effective Critical Exponents
  • 10.5.3 Global Crossover Behaviour of Fluids
  • 10.6 Discussion
  • Acknowledgements
  • References
  • ch. 11 Phase Behaviour of Ionic Liquid Systems Cor J. Peters
  • 11.1 Introduction
  • 11.2 Phase Behaviour of Binary Ionic Liquid Systems
  • 11.2.1 Phase Behaviour of (Ionic Liquid + Gas Mixtures)
  • 11.2.2 Phase Behaviour of (Ionic Liquid + Water)
  • 11.2.3 Phase Behaviour of (Ionic Liquid + Organic)
  • 11.3 Phase Behaviour of Ternary Ionic Liquid Systems
  • 11.3.1 Phase Behaviour of (Ionic Liquid + Carbon Dioxide + Organic)
  • 11.3.2 Phase Behaviour of (Ionic Liquid + Aliphatic + Aromatic)
  • 11.3.3 Phase Behaviour of (Ionic Liquid + Water + Alcohol)
  • 11.3.4 Phase Behaviour of Ionic Liquid Systems with Azeotropic Organic Mixtu
  • Note continued--
  • 12.1 Introduction
  • 12.2 The Development of a Thermodynamic Property Formulation
  • 12.3 Fitting an Equation of State to Experimental Data
  • 12.3.1 Recent Nonlinear Fitting Methods
  • 12.4 Pressure-Explicit Equations of State
  • 12.4.1 Cubic Equations
  • 12.4.2 The Benedict-Webb-Rubin Equation of State
  • 12.4.3 The Bender Equation of State
  • 12.4.4 The Jacobsen-Stewart Equation of State
  • 12.4.5 Thermodynamic Properties from Pressure-Explicit Equations of State
  • 12.5 Fundamental Equations
  • 12.5.1 The Equation of Keenan, Keyes, Hill, and Moore
  • 12.5.2 The Equations of Haar, Gallagher, and Kell
  • 12.5.3 The Equation of Schmidt and Wagner
  • 12.5.4 Reference Equations of Wagner
  • 12.5.5 Technical Equations of Span and of Lemmon
  • 12.5.6 Recent Equations of State 13.6 Concluding Remarks
  • References
  • ch. 14 Applied Non-Equilibrium Thermodynamics Dick Bedeaux
  • 14.1 Introduction
  • 14.1.1 A Systematic Thermodynamic Theory for Transport
  • 14.1.2 On the Validity of the Assumption of Local Equilibrium
  • 14.1.3 Concluding remarks
  • 14.2 Fluxes and Forces from the Second Law of Thermodynamics
  • 14.2.1 Continuous phases
  • 14.2.2 Maxwell-Stefan Equations
  • 14.2.3 Discontinuous Systems
  • 14.2.4 Concluding Remarks
  • 14.3 Chemical Reactions
  • 14.3.1 Thermal Diffusion in a Reacting System
  • 14.3.2 Mesoscopic Description Along the Reaction Coordinate
  • 14.3.3 Heterogeneous Catalysis
  • 14.3.4 Concluding Remarks
  • 14.4 The Path of Energy-Efficient Operation
  • 14.4.1 An Optimisation Procedure
  • 14.4.2 Optimal Heat Exchange
  • 14.4.3 The Highway Hypothesis for a Chemical Reactor
  • 14.4.4 Energy-Efficient Production of Hydrogen Gas
  • 14.4 Conclusions
  • References