Reasoning with probabilistic and deterministic graphical models exact algorithms

Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning task...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Dechter, Rina 1950- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: © 2013
Schriftenreihe:Synthesis lectures on artificial intelligence and machine learning 1939-4616 #23
Schlagworte:
Online-Zugang:DE-29
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000001cb4500
001 BV044757056
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 180212s2013 xx a||| o|||| 00||| eng d
020 |a 9781627051989  |c ebook  |9 978-162-705-198-9 
024 7 |a 10.2200/S00529ED1V01Y201308AIM023  |2 doi 
035 |a (OCoLC)1024104242 
035 |a (DE-599)BSZ425014266 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-29 
050 0 |a QA279 
082 0 |a 519.5 
082 0 |a 006.3/1 
082 0 |a 006.31 
100 1 |a Dechter, Rina  |d 1950-  |e Verfasser  |0 (DE-588)174090005  |4 aut 
245 1 0 |a Reasoning with probabilistic and deterministic graphical models  |b exact algorithms  |c Rina Dechter, University of California, Irvine 
264 0 |a [San Rafael, California]  |b Morgan & Claypool Publishers  |c [2013] 
264 4 |c © 2013 
300 |a Online Ressource (xiv, 177 pages)  |b illustrations 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Synthesis lectures on artificial intelligence and machine learning 1939-4616  |v #23 
520 3 |a Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well known that the tasks are computationally hard, but research during the past three decades has yielded a variety of principles and techniques that significantly advanced the state of the art. In this book we provide comprehensive coverage of the primary exact algorithms for reasoning with such models. The main feature exploited by the algorithms is the model's graph. We present inference-based, message-passing schemes (e.g., variable-elimination) and search-based, conditioning schemes (e.g., cycle-cutset conditioning and AND/OR search). Each class possesses distinguished characteristics and in particular has different time vs. space behavior. We emphasize the dependence of both schemes on few graph parameters such as the treewidth, cycle-cutset, and (the pseudo-tree) height. We believe the principles outlined here would serve well in moving forward to approximation and anytime-based schemes. The target audience of this book is researchers and students in the artificial intelligence and machine learning area, and beyond 
653 0 |a Graphical modeling (Statistics) 
653 0 |a Bayesian statistical decision theory 
653 0 |a Reasoning 
653 0 |a Algorithms 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe, Paperback  |z 978-1-62705-197-2 
830 0 |a Synthesis lectures on artificial intelligence and machine learning 1939-4616  |v #23  |w (DE-604)BV043983076  |9 23 
856 4 0 |u https://doi.org/10.2200/S00529ED1V01Y201308AIM023  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-37-IEX 
912 |a ZDB-105-MCB 
912 |a ZDB-105-MCS 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030152557 
966 e |u https://doi.org/10.2200/S00529ED1V01Y201308AIM023  |l DE-29  |p ZDB-105-MCB  |q UER_Einzelkauf  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819301627818934273
any_adam_object
author Dechter, Rina 1950-
author_GND (DE-588)174090005
author_facet Dechter, Rina 1950-
author_role aut
author_sort Dechter, Rina 1950-
author_variant r d rd
building Verbundindex
bvnumber BV044757056
callnumber-first Q - Science
callnumber-label QA279
callnumber-raw QA279
callnumber-search QA279
callnumber-sort QA 3279
callnumber-subject QA - Mathematics
collection ZDB-37-IEX
ZDB-105-MCB
ZDB-105-MCS
ctrlnum (OCoLC)1024104242
(DE-599)BSZ425014266
dewey-full 519.5
006.3/1
006.31
dewey-hundreds 500 - Natural sciences and mathematics
000 - Computer science, information, general works
dewey-ones 519 - Probabilities and applied mathematics
006 - Special computer methods
dewey-raw 519.5
006.3/1
006.31
dewey-search 519.5
006.3/1
006.31
dewey-sort 3519.5
dewey-tens 510 - Mathematics
000 - Computer science, information, general works
discipline Informatik
Mathematik
doi_str_mv 10.2200/S00529ED1V01Y201308AIM023
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03480nam a22004811cb4500</leader><controlfield tag="001">BV044757056</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180212s2013 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781627051989</subfield><subfield code="c">ebook</subfield><subfield code="9">978-162-705-198-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2200/S00529ED1V01Y201308AIM023</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1024104242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ425014266</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA279</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dechter, Rina</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)174090005</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reasoning with probabilistic and deterministic graphical models</subfield><subfield code="b">exact algorithms</subfield><subfield code="c">Rina Dechter, University of California, Irvine</subfield></datafield><datafield tag="264" ind1=" " ind2="0"><subfield code="a">[San Rafael, California]</subfield><subfield code="b">Morgan &amp; Claypool Publishers</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online Ressource (xiv, 177 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Synthesis lectures on artificial intelligence and machine learning 1939-4616</subfield><subfield code="v">#23</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well known that the tasks are computationally hard, but research during the past three decades has yielded a variety of principles and techniques that significantly advanced the state of the art. In this book we provide comprehensive coverage of the primary exact algorithms for reasoning with such models. The main feature exploited by the algorithms is the model's graph. We present inference-based, message-passing schemes (e.g., variable-elimination) and search-based, conditioning schemes (e.g., cycle-cutset conditioning and AND/OR search). Each class possesses distinguished characteristics and in particular has different time vs. space behavior. We emphasize the dependence of both schemes on few graph parameters such as the treewidth, cycle-cutset, and (the pseudo-tree) height. We believe the principles outlined here would serve well in moving forward to approximation and anytime-based schemes. The target audience of this book is researchers and students in the artificial intelligence and machine learning area, and beyond</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Graphical modeling (Statistics)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Reasoning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Algorithms</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-62705-197-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Synthesis lectures on artificial intelligence and machine learning 1939-4616</subfield><subfield code="v">#23</subfield><subfield code="w">(DE-604)BV043983076</subfield><subfield code="9">23</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2200/S00529ED1V01Y201308AIM023</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-37-IEX</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-105-MCB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-105-MCS</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030152557</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.2200/S00529ED1V01Y201308AIM023</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-105-MCB</subfield><subfield code="q">UER_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV044757056
illustrated Illustrated
indexdate 2024-12-24T06:20:33Z
institution BVB
isbn 9781627051989
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030152557
oclc_num 1024104242
open_access_boolean
owner DE-29
owner_facet DE-29
physical Online Ressource (xiv, 177 pages) illustrations
psigel ZDB-37-IEX
ZDB-105-MCB
ZDB-105-MCS
ZDB-105-MCB UER_Einzelkauf
publishDate 2013
publishDateSearch 2013
publishDateSort 2013
record_format marc
series Synthesis lectures on artificial intelligence and machine learning 1939-4616
series2 Synthesis lectures on artificial intelligence and machine learning 1939-4616
spelling Dechter, Rina 1950- Verfasser (DE-588)174090005 aut
Reasoning with probabilistic and deterministic graphical models exact algorithms Rina Dechter, University of California, Irvine
[San Rafael, California] Morgan & Claypool Publishers [2013]
© 2013
Online Ressource (xiv, 177 pages) illustrations
txt rdacontent
c rdamedia
cr rdacarrier
Synthesis lectures on artificial intelligence and machine learning 1939-4616 #23
Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well known that the tasks are computationally hard, but research during the past three decades has yielded a variety of principles and techniques that significantly advanced the state of the art. In this book we provide comprehensive coverage of the primary exact algorithms for reasoning with such models. The main feature exploited by the algorithms is the model's graph. We present inference-based, message-passing schemes (e.g., variable-elimination) and search-based, conditioning schemes (e.g., cycle-cutset conditioning and AND/OR search). Each class possesses distinguished characteristics and in particular has different time vs. space behavior. We emphasize the dependence of both schemes on few graph parameters such as the treewidth, cycle-cutset, and (the pseudo-tree) height. We believe the principles outlined here would serve well in moving forward to approximation and anytime-based schemes. The target audience of this book is researchers and students in the artificial intelligence and machine learning area, and beyond
Graphical modeling (Statistics)
Bayesian statistical decision theory
Reasoning
Algorithms
Erscheint auch als Druck-Ausgabe, Paperback 978-1-62705-197-2
Synthesis lectures on artificial intelligence and machine learning 1939-4616 #23 (DE-604)BV043983076 23
https://doi.org/10.2200/S00529ED1V01Y201308AIM023 Verlag URL des Erstveröffentlichers Volltext
spellingShingle Dechter, Rina 1950-
Reasoning with probabilistic and deterministic graphical models exact algorithms
Synthesis lectures on artificial intelligence and machine learning 1939-4616
title Reasoning with probabilistic and deterministic graphical models exact algorithms
title_auth Reasoning with probabilistic and deterministic graphical models exact algorithms
title_exact_search Reasoning with probabilistic and deterministic graphical models exact algorithms
title_full Reasoning with probabilistic and deterministic graphical models exact algorithms Rina Dechter, University of California, Irvine
title_fullStr Reasoning with probabilistic and deterministic graphical models exact algorithms Rina Dechter, University of California, Irvine
title_full_unstemmed Reasoning with probabilistic and deterministic graphical models exact algorithms Rina Dechter, University of California, Irvine
title_short Reasoning with probabilistic and deterministic graphical models
title_sort reasoning with probabilistic and deterministic graphical models exact algorithms
title_sub exact algorithms
url https://doi.org/10.2200/S00529ED1V01Y201308AIM023
volume_link (DE-604)BV043983076
work_keys_str_mv AT dechterrina reasoningwithprobabilisticanddeterministicgraphicalmodelsexactalgorithms