Numerical solution of differential equations introduction to finite difference and finite element methods

This introduction to finite difference and finite element methods is aimed at graduate students who need to solve differential equations. The prerequisites are few (basic calculus, linear algebra, and ODEs) and so the book will be accessible and useful to readers from a range of disciplines across s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Li, Zhilin 1956- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2018
Schlagworte:
Online-Zugang:DE-12
DE-92
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV044727952
003 DE-604
005 20231212
007 cr|uuu---uuuuu
008 180124s2018 xx o|||| 00||| eng d
020 |a 9781316678725  |c Online  |9 978-1-316-67872-5 
024 7 |a 10.1017/9781316678725  |2 doi 
035 |a (ZDB-20-CBO)CR9781316678725 
035 |a (OCoLC)1017751824 
035 |a (DE-599)BVBBV044727952 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-92  |a DE-12 
082 0 |a 629.8/312  |2 23 
100 1 |a Li, Zhilin  |d 1956-  |e Verfasser  |4 aut 
245 1 0 |a Numerical solution of differential equations  |b introduction to finite difference and finite element methods  |c Zhilin Li, Zhonghua Qiao, Tao Tang 
264 1 |a Cambridge  |b Cambridge University Press  |c 2018 
300 |a 1 online resource (ix, 293 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Title from publisher's bibliographic system (viewed on 17 Nov 2017) 
520 |a This introduction to finite difference and finite element methods is aimed at graduate students who need to solve differential equations. The prerequisites are few (basic calculus, linear algebra, and ODEs) and so the book will be accessible and useful to readers from a range of disciplines across science and engineering. Part I begins with finite difference methods. Finite element methods are then introduced in Part II. In each part, the authors begin with a comprehensive discussion of one-dimensional problems, before proceeding to consider two or higher dimensions. An emphasis is placed on numerical algorithms, related mathematical theory, and essential details in the implementation, while some useful packages are also introduced. The authors also provide well-tested MATLAB codes, all available online 
650 4 |a Algebras, Linear 
650 4 |a Numerical calculations 
650 4 |a Control theory 
650 0 7 |a Differentialgleichung  |0 (DE-588)4012249-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Differentialgleichung  |0 (DE-588)4012249-9  |D s 
689 0 1 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |D s 
689 0 |5 DE-604 
700 1 |a Qiao, Zhonghua  |e Sonstige  |4 oth 
700 1 |a Tang, Tao  |e Sonstige  |4 oth 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781107163225 
856 4 0 |u https://doi.org/10.1017/9781316678725  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030124076 
966 e |u https://doi.org/10.1017/9781316678725  |l DE-12  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781316678725  |l DE-92  |p ZDB-20-CBO  |q FHN_PDA_CBO_Kauf  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819301564530032641
any_adam_object
author Li, Zhilin 1956-
author_facet Li, Zhilin 1956-
author_role aut
author_sort Li, Zhilin 1956-
author_variant z l zl
building Verbundindex
bvnumber BV044727952
collection ZDB-20-CBO
ctrlnum (ZDB-20-CBO)CR9781316678725
(OCoLC)1017751824
(DE-599)BVBBV044727952
dewey-full 629.8/312
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 629 - Other branches of engineering
dewey-raw 629.8/312
dewey-search 629.8/312
dewey-sort 3629.8 3312
dewey-tens 620 - Engineering and allied operations
discipline Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik
doi_str_mv 10.1017/9781316678725
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02770nam a2200493zc 4500</leader><controlfield tag="001">BV044727952</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231212 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180124s2018 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316678725</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-67872-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781316678725</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316678725</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1017751824</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044727952</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-12</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.8/312</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Zhilin</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical solution of differential equations</subfield><subfield code="b">introduction to finite difference and finite element methods</subfield><subfield code="c">Zhilin Li, Zhonghua Qiao, Tao Tang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 293 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 17 Nov 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This introduction to finite difference and finite element methods is aimed at graduate students who need to solve differential equations. The prerequisites are few (basic calculus, linear algebra, and ODEs) and so the book will be accessible and useful to readers from a range of disciplines across science and engineering. Part I begins with finite difference methods. Finite element methods are then introduced in Part II. In each part, the authors begin with a comprehensive discussion of one-dimensional problems, before proceeding to consider two or higher dimensions. An emphasis is placed on numerical algorithms, related mathematical theory, and essential details in the implementation, while some useful packages are also introduced. The authors also provide well-tested MATLAB codes, all available online</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebras, Linear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical calculations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiao, Zhonghua</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Tao</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107163225</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781316678725</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030124076</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316678725</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316678725</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV044727952
illustrated Not Illustrated
indexdate 2024-12-24T06:19:35Z
institution BVB
isbn 9781316678725
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030124076
oclc_num 1017751824
open_access_boolean
owner DE-92
DE-12
owner_facet DE-92
DE-12
physical 1 online resource (ix, 293 pages)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO_Kauf
publishDate 2018
publishDateSearch 2018
publishDateSort 2018
publisher Cambridge University Press
record_format marc
spelling Li, Zhilin 1956- Verfasser aut
Numerical solution of differential equations introduction to finite difference and finite element methods Zhilin Li, Zhonghua Qiao, Tao Tang
Cambridge Cambridge University Press 2018
1 online resource (ix, 293 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Title from publisher's bibliographic system (viewed on 17 Nov 2017)
This introduction to finite difference and finite element methods is aimed at graduate students who need to solve differential equations. The prerequisites are few (basic calculus, linear algebra, and ODEs) and so the book will be accessible and useful to readers from a range of disciplines across science and engineering. Part I begins with finite difference methods. Finite element methods are then introduced in Part II. In each part, the authors begin with a comprehensive discussion of one-dimensional problems, before proceeding to consider two or higher dimensions. An emphasis is placed on numerical algorithms, related mathematical theory, and essential details in the implementation, while some useful packages are also introduced. The authors also provide well-tested MATLAB codes, all available online
Algebras, Linear
Numerical calculations
Control theory
Differentialgleichung (DE-588)4012249-9 gnd rswk-swf
Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf
Differentialgleichung (DE-588)4012249-9 s
Numerisches Verfahren (DE-588)4128130-5 s
DE-604
Qiao, Zhonghua Sonstige oth
Tang, Tao Sonstige oth
Erscheint auch als Druck-Ausgabe 9781107163225
https://doi.org/10.1017/9781316678725 Verlag URL des Erstveröffentlichers Volltext
spellingShingle Li, Zhilin 1956-
Numerical solution of differential equations introduction to finite difference and finite element methods
Algebras, Linear
Numerical calculations
Control theory
Differentialgleichung (DE-588)4012249-9 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
subject_GND (DE-588)4012249-9
(DE-588)4128130-5
title Numerical solution of differential equations introduction to finite difference and finite element methods
title_auth Numerical solution of differential equations introduction to finite difference and finite element methods
title_exact_search Numerical solution of differential equations introduction to finite difference and finite element methods
title_full Numerical solution of differential equations introduction to finite difference and finite element methods Zhilin Li, Zhonghua Qiao, Tao Tang
title_fullStr Numerical solution of differential equations introduction to finite difference and finite element methods Zhilin Li, Zhonghua Qiao, Tao Tang
title_full_unstemmed Numerical solution of differential equations introduction to finite difference and finite element methods Zhilin Li, Zhonghua Qiao, Tao Tang
title_short Numerical solution of differential equations
title_sort numerical solution of differential equations introduction to finite difference and finite element methods
title_sub introduction to finite difference and finite element methods
topic Algebras, Linear
Numerical calculations
Control theory
Differentialgleichung (DE-588)4012249-9 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
topic_facet Algebras, Linear
Numerical calculations
Control theory
Differentialgleichung
Numerisches Verfahren
url https://doi.org/10.1017/9781316678725
work_keys_str_mv AT lizhilin numericalsolutionofdifferentialequationsintroductiontofinitedifferenceandfiniteelementmethods
AT qiaozhonghua numericalsolutionofdifferentialequationsintroductiontofinitedifferenceandfiniteelementmethods
AT tangtao numericalsolutionofdifferentialequationsintroductiontofinitedifferenceandfiniteelementmethods