Carnivorous plants physiology, ecology, and evolution

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Ellison, Aaron M. 1960- (HerausgeberIn), Adamec, Lubomír (HerausgeberIn)
Format: Buch
Sprache:English
Veröffentlicht: Oxford Oxford University Press 2018
Ausgabe:First edition
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV044723481
003 DE-604
005 20190327
007 t|
008 180120s2018 xx a||| |||| 00||| eng d
020 |a 9780198779841  |c hbk  |9 978-0-19-877984-1 
020 |a 9780198833727  |9 978-0-19-883372-7 
035 |a (OCoLC)1021827710 
035 |a (DE-599)BVBBV044723481 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-11  |a DE-355  |a DE-188  |a DE-703  |a DE-20  |a DE-12 
084 |a WI 4200  |0 (DE-625)148826:  |2 rvk 
245 1 0 |a Carnivorous plants  |b physiology, ecology, and evolution  |c edited by Aaron M. Ellison, Lubomír Adamec 
250 |a First edition 
264 1 |a Oxford  |b Oxford University Press  |c 2018 
300 |a xxxvi, 510 Seiten  |b Illustrationen, Diagramme, Karten 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Fleischfressende Pflanzen  |0 (DE-588)4017480-3  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4143413-4  |a Aufsatzsammlung  |2 gnd-content 
689 0 0 |a Fleischfressende Pflanzen  |0 (DE-588)4017480-3  |D s 
689 0 |5 DE-604 
700 1 |a Ellison, Aaron M.  |d 1960-  |0 (DE-588)173704840  |4 edt 
700 1 |a Adamec, Lubomír  |4 edt 
856 4 2 |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030119699&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030119699 

Datensatz im Suchindex

_version_ 1819677878194798592
adam_text Contents Preface xxiii Editors and contributors XXV Foreword XXXV Daniel M. Joel Part I Overview 1 1 Introduction: what is a carnivorous plant? 3 Aaron M. Ellison and Lubomir Adamec 1.1 The carnivorous syndrome - 3 1.2 Subsets of carnivorous plants 4 1.3 Other plants that share some carnivorous characteristics 5 1.4 The benefits and costs of carnivory 5 1.5 The future: learning from carnivorous plants 5 2 Biogeography and habitats of carnivorous plants 7 J. Stephen Brewer and Jan Schlauer 2.1 Introduction 7 2.2 Global biogeography 7 2.3 Habitat specificity defines regional distributions 13 2.3.1 Hypotheses concerning co-occurrence of carnivorous and noncarnivorous plants 13 2.3.2 Regional patterns of co-occurrence 14 2.4 Mechanisms of coexistence in wet, unshaded, nutrient-poor soils 18 2.4.1 Niche complementarity 18 2.4.2 Fire-mediated stochasticity 19 2.5 Future research 20 3 Evolution of carnivory in angiosperms 22 Andreas Fleischmann, Jan Schlauer, Stephen A. Smith, and Thomas J. Givnish 3.1 Introduction 22 3.1.1 Evolution of carnivory 22 3.1.2 Origins of carnivory 24 3.1.3 Phylogeography and timing of origin 26 viii CONTENTS 3.2 Nepenthales 28 3.2.1 Drosophyllaceae 30 3.2.2 Dioncophyllaceae 30 3.2.3 Nepenthaceae 31 3.2.4 Droseraceae 32 3.3 Oxalidales 32 3.3.1 Cephalotaceae 32 3.4 Asteridae: Ericales 34 3.4.1 Roridulaceae 34 3.4.2 Sarraceniaceae 35 3.5 Asteridae: Lamíales 35 3.5.1 Byblidaceae 35 3.5.2 Plantaginaceae 35 3.5.3 Lentibulariaceae 35 3.6 Poales 38 3.6.1 Bromeliaceae 38 3.6.2 Eriocaulaceae 39 3.7 Loss of carnivory 40 3.8 Future research 41 Part II Systematics and Evolution of Carnivorous Plants 43 4 Systematics and evolution of Droseraceae 45 Andreas Fleischmann, Adam T. Cross, Robert Gibson, Paulo M. Gonella, and Kingsley W. Dixon 4.1 Introduction 45 4.2 Dionaea 47 4.2.1 Morphology and systematics 47 4.2.2 Carnivory 48 4.2.3 Ecology 48 4.3 Aldrovanda 48 4.3.1 Morphology and systematics 48 4.3.2 Distribution 49 4.3.3 Carnivory 49 4.3.4 Ecology and conservation 49 4.4 Drosera 50 4.4.1 Life history and morphology 50 4.4.2 Phylogeny and taxonomy 52 4.4.3 Distribution 53 4.4.4 Carnivory 54 4.4.5 Ecology and habitats 54 4.4.6 Conservation 56 4.5 Future research 57 CONTENTS ¡x 5 Systematics and evolution of Nepenthes 58 Charles Clarke, Jan Schlauer, Jonathan Moran, and Alastair Robinson 5.1 Introduction 58 5.2 Taxonomy and systematics 58 5.2.1 Determinants of change in Nepenthes taxonomy 61 5.2.2 Toward an improved taxonomy of Nepenthes 62 5.2.3 Best practices for describing new taxa in Nepenthes 64 5.3 Evolution in Nepenthes 65 5.3.1 Phylogeography 65 5.3.2 Drivers of diversification 66 5.3.3 Molecular evolution in Nepenthes 67 5.3.4 Infrageneric classification 67 5.4 Future research 69 6 Systematics and evolution of Lentibulariaceae: I. Pinguicula 70 Andreas Fleischmann and Aymeric Roccia 6.1 Introduction 70 6.2 Life history and morphology 70 6.2.1 Life-history strategies 70 6.2.2 Leaves 71 6.2.3 Inflorescences and flowers 72 6.2.4 Chromosome numbers 74 6.2.5 Clonal growth 74 6.3 Phylogeny and taxonomy 74 6.3.1 Phylogeography 74 6.3.2 Infrageneric classification 75 6.4 Distribution 76 6.4.1 Global patterns of diversity 76 6.4.2 México: the center of diversity 77 6.4.3 Diversity of other regions 78 6.5 Carnivory and other plant-insect interactions 78 6.5.1 Prey 78 6.5.2 Associated arthropods 78 6.6 Conservation 79 6.7 Future research 80 7 Systematics and evolution of Lentibulariaceae: II. Genlisea 81 Andreas Fleischmann 7.1 Life history and morphology 81 7.1.1 Leaves 81 7.1.2 Inflorescences and flowers 82 7.1.3 Fruits and seeds 83 x CONTENTS 7.2 Camivory 84 7.3 Phylogeny and evolution 84 7.3.1 Infrageneric classification 84 7.3.2 Phylogeography 84 7.3.3 Chromosome numbers 86 7.3.4 Genome size 86 7.4 Distribution 86 7.4.1 Global patterns of diversity 86 7.4.2 Brazil: the center of diversity 87 7.4.3 African species 87 7.5 Future research 88 8 Systematics and evolution of Lentibulariaceae: III. Utricularia 89 Richard W. Jobson, Paulo C. Baleeiro, and Cástor Guisande 8.1 Introduction 89 8.2 Phylogeny and taxonomy 89 8.2.1 Early classification and delimitation 89 8.2.2 Contemporary phylogenies 89 8.3 Evolution of life histories and morphology 92 8.3.1 Habitats and life history 92 8.3.2 Stolons, rhizoids, and leaves 92 8.3.3 Bladder-trap morphology 94 8.3.4 Bladder-trap evolution 96 8.3.5 Inflorescences, flowers, and pollen 96 8.3.6 Cytology 98 8.3.7 Fruits and seeds: structure and dispersal 98 8.4 Population dynamics 99 8.4.1 Population genetics 99 8.4.2 Pollination 99 8.4.3 Clonal growth 100 8.5 Contemporary biogeography and phylogeography 100 8.5.1 Global patterns of diversity 100 8.5.2 Phylogeography 101 8.5.3 Diversification and molecular rate acceleration 101 8.5.4 Diversification time and biogeographic shift in subgenus Polypompholyx 103 8.6 Conservation issues 104 8.7 Future research 104 9 Systematics and evolution of Sarraceniaceae 105 Robert F.C. Naczi 9.1 Introduction 105 9.2 Taxonomy 105 9.2.1 Darlingtonia 105 9.2.2 Heliamphora 105 9.2.3 Sarracenia 107 CONTENTS xi 9.3 Phylogenetic relationships 110 9.3.1 Fossils 110 9.3.2 Morphological evidence for relationships of Sarraceniaceae 110 9.3.3 Molecular evidence for relationships of Sarraceniaceae 111 9.3.4 Molecular divergence time estimation 112 9.3.5 Interpreting morphology in light of molecular phylogeny 113 9.4 Evolutionary patterns and processes 115 9.4.1 Patterns 115 9.4.2 Chromosome number variation 115 9.4.3 Genetic diversity 115 9.4.4 Hybridization 116 9.4.5 Heterochrony 117 9.4.6 Evolution of the Sarraceniaceae pitcher 118 9.4.7 Historical biogeography 118 9.5 Future research 118 10 Systematics and evolution of small genera of carnivorous plants 120 Adam! Cross, Maria Paniw, André Vito Scatigna, Nick Kalfas, Bruce Anderson, Thomas J. Givnish, and Andreas Fleischmann 10.1 Introduction 120 10.2 Brocchinia 120 10.2.1 Life history, morphology, and systematics 120 10.2.2 Carnivory - 121 10.2.3 Distribution, habitat, and conservation 123 10.3 Catopsis 124 10.3.1 Morphology and systematics 124 10.3.2 Carnivory 124 10.3.3 Distribution, habitat, and conservation 124 10.4 Paepalanthus 124 10.5 Drosophyllum 125 10.5.1 Life history, morphology, and systematics 125 10.5.2 Carnivory 125 10.5.3 Distribution, habitat, and conservation 126 10.6 Triphyophyiium 126 10.6.1 Life history, morphology, and systematics 126 10.6.2 Carnivory 127 10.6.3 Distribution, habitat, and conservation 128 10.7 Cephalotus 128 10.7.1 Morphology and systematics 128 10.7.2 Carnivory 129 10.7.3 Distribution, habitat, and conservation 129 10.8 Roridula 130 10.8.1 Morphology and systematics 130 10.8.2 Carnivory 130 10.8.3 Distribution and habitat 131 10.9 Byblis 131 10.9.1 Life history, morphology, and systematics 131 xii CONTENTS 10.9.2 Camivory 132 10.9.3 Distribution, habitat, and conservation 132 10.10 Philcoxia 133 10.10.1 Morphology and systematics 133 10.10.2 Carnivory 133 10.10.3 Distribution, habitat, and conservation 133 10.11 Future research 134 11 Carnivorous plant genomes 135 Tanya Renner, Tianying Lan, Kimberly M. Farr, Enrique ibarra-Laclette, Luis Herrera-Estrella, Stephan C. Schuster, Mitsuyasu Hasebe, Kenji Fukushima, and Victor A. Albert 11.1 Introduction: flowering plant genomes with a twist 135 11.1.1 Nuclear genome sequencing and assembly efforts for carnivorous plants 136 11.2 Genome evolution 137 11.2.1 Utricularia gibba has a dynamic genome 137 11.2.2 Selection for genome size reduction in the Lentibulariaceae 139 11.2.3 Adaptive evolution through gene duplication is largely limited to small-scale events in Cephalotus follicularis 139 11.3 Contribution of whole gene duplications to functional diversity 139 11.4 The adaptive roles of small-scale gene duplication events 140 11.4.1 Utricularia gibba small-scale gene duplication events 140 11.4.2 Small-scale gene duplication events in Cephalotus follicularis 141 11.5 Evolutionary rates and gene loss in Utricularia gibba 144 11.5.1 ROS scavenging and DNA repair 144 11.5.2 Production of diploid gametes and the evolution of Utricularia gibba polyploidy 145 11.5.3 Defense response 145 11.5.4 Essential nutrient transport and enzyme activity 146 11.5.5 Auxin response 146 11.5.6 Root and shoot morphogenesis and the transition to the aquatic habit 146 11.6 Genomic insights into leaf patterning in Cephalotus follicularis 147 11.7 Evolutionary convergence of digestive enzymes 148 11.8 The Utricularia gibba genome provides a look at complete plant centromeres 149 11.9 Additional nuclear genomes and transcriptomes of carnivorous plants 151 11.10 Organellar genomes 152 11.11 Future research 152 Part III Physiology, Form, and Function 155 12 Attraction of prey 157 John D. Horner, Bartosz J. Pfachno, Ulrike Bauer, and Bruno Di Giusto 12.1 Introduction 157 12.2 Visual cues 157 CONTENTS xiii 12.2.1 Reflectance and absorption patterns 157 12.2.2 Red color as an attractant 158 12.3 Nectar rewards 159 12.4 Olfactory cues 160 12.5 Acoustic attraction 163 12.6 Prey attraction in carnivorous plants with aquatic traps 163 12.7 Synergistic effects of multiple attractants 163 12.8 Temporal variation of attractive cues 163 12.9 Is production of attractants a crucial trait for carnivory? 164 12.10 Cost of attractants 164 12.11 Future research 165 13 Functional anatomy of carnivorous traps 167 Bartosz J. Piachno and Lyudmila E. Muravnik 13.1 Introduction 167 13.2 Nectar glands 167 13.2.1 Nectaries of the Sarraceniaceae 167 13.2.2 Nectaries of Cephalotus 168 13.2.3 Nectaries of Nepenthes 168 13.3 Slippery surfaces of pitcher-plant traps and bromeliad tanks 169 13.3.1 Epicuticular wax crystals 170 13.3.2 Teeth, folds, and ridges 170 13.3.3 Directional features 170 13.4 Sticky glands of adhesive traps 170 13.4.1 Mucilage glands of carnivorous Lamiales 171 13.4.2 Mucilage glands of adhesively trapping Caryophyllales 171 13.4.3 Resin emergences of carnivorous Ericales 172 13.4.4 Glands of other plants that entrap insects 172 13.5 Suction traps and eel traps of the Lentibulariaceae 172 13.5.1 The bladders of Utricularia 172 13.5.2 The eel trap of Genlisea 174 13.6 Fecal traps 176 13.7 Causes of prey death 177 13.8 Digestive and absorptive glands 177 13.8.1 The terminal element and enzyme localization in digestive glands 177 13.8.2 Nutrient uptake and transport in the middle and basal elements 178 13.9 Future research 179 14 Motile traps 180 Simon Poppinga, Ulrike Bauer, Thomas Speck, and Alexander G. Volkov 14.1 Introduction 180 14.2 Active motile traps 180 14.2.1 Snap-traps 180 14.2.2 Motile adhesive traps 185 14.2.3 Suction traps 188 xiv CONTENTS 14.3 The passive motile trap of Nepenthes gracilis 191 14.4 Future research 192 15 Non-motile traps 194 Ulrike Bauer, Reinhard letter, and Simon Poppinga 15.1 Introduction 194 15.2 Sticky traps and trap glues 195 15.3 Anti-adhesive surfaces 197 15.3.1 Wax blooms 197 15.3.2 Cuticular folds 199 15.3.3 Directional (anisotropic) surfaces 200 15.3.4 Wettable (superhydrophilic) surfaces 201 15.4 Mechanical obstructions 203 15.5 Ecological implications of wetness-activated trapping mechanisms 203 15.6 Future research 205 16 Biochemistry of prey digestion and nutrient absorption 207 lldikó Matusíková, Andrej Pavlovic, and Tanya Renner 16.1 Introduction 207 16.2 Composition of the digestive fluid 207 16.2.1 Proteases 208 16.2.2 Phosphatases 211 16.2.3 Chitinases 211 16.2.4 Nucleases 212 16.2.5 Carbohydrate-digesting enzymes 213 16.3 Regulation of enzyme release and activity in traps 213 16.3.1 Enzyme induction 213 16.3.2 Combinations of constitutive and inducible production of enzymes 214 16.3.3 Enzyme activity 216 16.4 Evolution of digestive enzymes and their regulatory mechanisms 216 16.4.1 Subfunctionalization of class I chitinases for defense and digestion 217 16.4.2 Evolution and expression of class III chitinases 218 16.4.3 Evolution and expression of class V 0-1,3-glucanases 219 16.4.4 Evolution and specificity of proteases 219 16.5 Future research 219 17 Mineral nutrition of terrestrial carnivorous plants 221 LubomirAdamecandAndrej Pavlovic 17.1 Introduction 221 17.2 Ecophysiological traits in stressful habitats 221 17.3 Nutrient content and stoichiometry 222 17.4 Mineral nutrient economy 223 17.4.1 Mineral nutrient uptake from prey 223 17.4.2 Mechanism of nutrient uptake from prey 224 CONTENTS xv 17.4.3 Mineral nutrient reutilization 224 17.4.4 Leaf-root nutrient interaction 224 17.4.5 Seasonal nutrient gain 225 17.5 Growth effects 226 17.6 Effects of mineral nutrition on expression of carnivorous traits 227 17.7 Mineral nutrition of Nepenthes 228 17.8 Nutritional cost/benefit relationships of carnivory 230 17.9 Future research 230 18 Why are plants carnivorous? Cost/benefit analysis, whole-plant growth, and the context-specific advantages of botanical carnivory 232 Thomas J. Givnish, K. William Sparks, Steven J. Hunter, and Andrej Pavlovic 18.1 Introduction 232 18.2 The cost/benefit model for the evolution of plant carnivory 233 18.2.1 The benefits of carnivory 234 18.2.2 Benefits vary with environmental conditions 234 18.3 Predictions of the cost/benefit model 236 18.3.1 Carnivory is most likely to evolve and be favored ecologically in habitats that are sunny, moist, and nutrient poor 236 18.3.2 Epiphytism works against carnivory and favors myrmecotrophy 236 18.3.3 Optimal investment in carnivory in terrestrial plants should increase toward the sunniest, moistest, most nutrient-poor sites 236 18.3.4 Optimal trap mechanism and form should depend on tradeoffs associated with environmental conditions, prey type, and trap type 237 18.3.5 Carnivorous plants should have low photosynthetic rates and RGRs 237 18.3.6 Rainy, humid conditions or wet soils favor carnivores by lowering the costs of glandular secretion or permitting passive accumulation of rainwater 237 18.3.7 Possession of defensive glandular hairs should facilitate the evolution of carnivory 237 18.3.8 Fire over infertile substrates favors carnivory 237 18.3.9 The ability of carnivorous plants to grow on bare rock or sterile sands must have evolved in stepwise fashion 238 18.3.10 Anoxic or toxic soils should favor carnivory on open, moist sites 238 18.3.11 Growth co-limitation by multiple nutrients may favor the paradoxical increase in root investment seen in carnivorous plants that have recently captured prey 240 18.3.12 Paradoxically, in aquatic carnivorous Utricularia, harder, more fertile waters should favor greater investment in traps 241 18.3.13 Soil anoxia or extreme infertility militate against tall, woody plants and may restrict carnivory to short, mostly herbaceous plants 241 xvi CONTENTS 18.4 Assumptions of the cost/benefit model 242 18.4.1 Costs of carnivory 242 18.4.2 Allocation to carnivorous structures 242 18.4.3 Prey capture increases with allocation to carnivory 244 18.4.4 Benefits of carnivory 245 18.4.5 Plateauing benefits of carnivory 245 18.4.6 Growth advantage of carnivorous plants 245 18.5 Tests of predictions of the cost/benefit model 246 18.5.1 Botanical carnivory is most likely in nutrient-poor, sunny, and moist habitats 246 18.5.2 Carnivorous epiphytes should be rare but myrmecophytic epiphytes should be more common 247 18.5.3 Investment in carnivory by terrestrial plants should increase toward the sunniest, moistest, most nutrient-poor sites 248 18.5.4 Form and function of traps depends on tradeoffs associated with environmental conditions and prey type 250 18.5.5 Carnivorous plants should have low photosynthetic rates and RGR 251 18.5.6 Rainy, humid conditions or wet soils favor carnivorous plants by lowering the costs of glandular secretion or allowing passive accumulation of rainwater 252 18.5.7 Possession of defensive glandular hairs facilitates the evolution of carnivory 252 18.5.8 Fire over infertile soils favors carnivorous plants 253 18.5.9 Gradual evolution of carnivory is essential in extreme habitats 253 18.5.10 Anoxic or toxic soils should favor carnivory on open, moist sites 253 18.5.11 Co-limitation of growth by multiple nutrients may favor the paradoxical increase in root investment by carnivorous plants that recently have captured prey 253 18.5.12 Harder, more fertile waters should favor greater investment in traps by Utricularia 254 18.5.13 Soil anoxia or extreme infertility makes tall, woody carnivores impossible 254 18.6 Future research 254 19 Ecophysiology of aquatic carnivorous plants 256 Lubomir Adamec 19.1 Introduction 256 19.2 Habitat characteristics 256 19.3 Morphology 257 19.4 Growth, mineral nutrition, photosynthesis, and respiration 258 19.4.1 Growth 258 19.4.2 Mineral nutrition 259 19.4.3 Photosynthesis and respiration 261 19.5 Trap ecophysiology of aquatic Utricularia 262 19.5.1 Water flow 262 19.5.2 Prey digestion 264 CONTENTS xvii 19.5.3 The role of trap commensals 265 19.5.4 Oxygen regime and trap respiration 266 19.6 Regulation of investment in carnivory 267 19.7 Turions 268 19.8 Future research 269 20 Biotechnology with carnivorous plants 270 Laurent Legendre and Douglas W. Darnowski 20.1 Introduction 270 20.2 Activity and production of pharmaceutical substances 270 20.2.1 Droseraceae and Nepenthaceae 270 20.2.2 Sarraceniaceae 276 20.2.3 Lentibulariaceae 276 20.3 Mass propagation 277 20.3.1 In vitro culture 277 20.3.2 Hydroponics 279 20.4 Industrial products inspired by botanical carnivory 279 20.4.1 Production tools for recombinant proteins 279 20.4.2 Biomimetic materials 280 20.5 Future research 281 Part IV Ecology 283 21 Prey selection and specialization by carnivorous plants 285 Douglas Darnowski, Ulrike Bauer, Marcos Méndez, John Horner, and Bartosz J. Plachno 21.1 Introduction 285 21.2 Prey selection by carnivorous plants with motile traps 285 21.2.1 Aldrovanda 285 21.2.2 Dionaea 286 21.2.3 Utricularia 286 21.2.4 Drosera 288 21.3 Prey selection by carnivorous plants with non-motile traps 289 21.3.1 Genlisea 289 21.3.2 Philcoxia 290 21.3.3 Drosophyllum 290 21.3.4 Pinguicula 290 21.3.5 Nepenthes 291 21.3.6 Sarracenia 292 21.3.7 Brocchinia,Catopsis,Cephalotus, and Heliamphora 293 21.4 Future research 293 22 Reproductive biology and pollinator-prey conflicts 294 Adam T. Cross, Arthur R. Davis, Andreas Fleischmann, John D. Horner, Andreas Jürgens, David J. Merritt, Gillian L. Murza, and Shane R. Turner 22.1 Introduction 294 22.2 Pollinator-prey conflict 295 xviii CONTENTS 22.2.1 Autogamy 295 22.2.2 Specialization on pollinators and prey 296 22.2.3 Carnivorous traps that mimic flowers 297 22.2.4 Spatial separation of flowers and traps 297 22.2.5 Temporal separation of flowering and trapping 298 22.3 Pollinator-prey conflict as a function of trap type 298 22.3.1 Sticky traps 298 22.3.2 Pitfall traps 300 22.3.3 The suction traps of Utricularia 301 22.3.4 Snap-traps 302 22.3.5 Eel traps 302 22.4 Seed morphology, germination biology, and seed dormancy 302 22.4.1 Bromeliaceae 306 22.4.2 Eriocaulaceae 307 22.4.3 Droseraceae 307 22.4.4 Drosophyllaceae 308 22.4.5 Nepenthaceae 308 22.4.6 Dioncophyllaceae 309 22.4.7 Cephalotaceae 309 22.4.8 Roridulaceae 309 22.4.9 Sarraceniaceae 309 22.4.10 Byblidaceae 310 22.4.11 Plantaginaceae 310 22.4.12 Lentibulariaceae 311 22.5 Conservation seed banking 311 22.6 Future research 312 23 Commensals of Nepenthes pitchers 314 Leonora S. Bittleston 23.1 Introduction 314 23.2 History of Nepenthes inquiline studies 314 23.3 Physical properties of Nepenthes pitchers 324 23.4 Nepenthes inquilines and their functional roles 324 23.4.1 Arthropods, vermiform organisms, and rotifers 324 23.4.2 Fungi, protozoa, algae, and bacteria 325 23.4.3 Other inquilines 327 23.4.4 Inquiline effects on hosts 327 23.5 Geographic patterns 327 23.5.1 Patterns within and among pitchers 327 23.5.2 Comparisons with surrounding habitats 330 23.5.3 Inquilines of Nepenthes and Sarracenia 330 23.6 Future research 332 24 Pitcher-plant communities as model systems for addressing fundamental questions in ecology and evolution 333 Thomas E. Miller, William E. Bradshaw, and Christina M. Holzapfe! 24.1 Introduction 333 24.2 Natural history of Sarracenia and its inquilines 333 CONTENTS xix 24.2.1 Prey capture 334 24.2.2 Microbes 334 24.2.3 Bacterivores 334 24.2.4 Wyeomyia smithii 334 24.2.5 Other Dipterans 336 24.2.6 Inquiline dispersal 336 24.2.7 Non-aquatic associates: moths 336 24.2.8 Pollinators 336 24.2.9 Spiders 337 24.3 Sarracenia purpurea and its associates as a model ecological system 337 24.3.1 Mutualism between Sarracenia purpurea and its aquatic inquilines 337 24.3.2 Consumer versus resource control of communities 338 24.3.3 Testing theories of succession 338 24.3.4 Dispersal and metacommunities 339 24.3.5 Biogeography at the scale of a community 340 24.3.6 Evolution in a community context 341 24.4 Wyeomyia as a model system for inquiline species 342 24.4.1 Density-dependent selection 342 24.4.2 Evolution of protandry 342 24.4.3 The evolution of diapause and photoperiodism in Wyeomyia smithii 343 24.4.4 Climatic change as a selective force driving evolution 345 24.4.5 Genetic architecture of adaptive evolution 346 24.5 Future research 347 25 The Utricularia-associated microbiome: composition, function, and ecology 349 Dagmara Sirová, Jifí Bárta, Jakub Borovec, and Jaroslav Vrba 25.1 Introduction 349 25.2 The environment of the trap lumen 350 25.3 Prokaryotes 351 25.4 Eukaryotes 353 25.4.1 Algae 353 25.4.2 Fungi 354 25.4.3 Protozoa 354 25.4.4 Are metazoa capable of long-term survival in Utricularia traps? 355 25.5 Periphyton 355 25.6 Effects of microbial activity on Utricularia growth 356 25.7 Future research 357 26 Nutritional mutualisms of Nepenthes and Roridula 359 Jonathan A. Moran, Bruce Anderson, Lijin Chin, Melinda Greenwood, and Charles Clarke 26.1 Introduction 359 26.2 Nepenthes and Formicidae 359 26.2.1 Nepenthes rafflesiana 359 26.2.2 Nepenthes bicalcarata 361 XX CONTENTS 263 Nepenthes and vertebrates 362 263.1 Types of interactions with vertebrates 362 263.2 Highland Nepenthes and terrestrial mammals 363 2633 Nepenthes hemsleyana and bats 366 263.4 The future 367 26.4 Other potential mutualists with Nepenthes 367 26.4.1 Nepenthes albomarginata 367 26.4.2 Nepenthes ampullaria 368 26.5 Roridula and Hemiptera 369 26.5.1 Digestive mutualism 369 26.5.2 Other symbionts 370 26.6 Future research 371 Part V The Future of Carnivorous Plants 373 27 Conservation of carnivorous plants 375 Charles Clarke, Adam Cross, and Barry Rice 27.1 Introduction 375 27.2 The conservation status of carnivorous plants 376 273 Key threats 377 27.4 Carnivorous plant conservation in North America 378 27.4.1 Threats 378 27.4.2 Species at risk 379 27.43 Expert assessments 379 27.4.4 Conservation and management of threatened species 380 27.4.5 The role of horticulture 380 27.5 Conservation of Nepenthes in Southeast Asia 381 27.5.1 Poaching 381 27.5.2 Habitat fragmentation 381 27.53 Narrow endemics 382 27.5.4 Taxonomic fragmentation 383 27.6 Conservation of Australian carnivorous plants 384 27.6.1 The Southwest Australian floristic region 385 27.6.2 Diversity 385 27.63 Threats 385 27.6.4 Conservation and management 387 27.7 Future research and conservation prospects 387 28 Estimating the exposure of carnivorous plants to rapid climatic change 389 Matthew C. Fitzpatrick and Aaron M. Ellison 28.1 Introduction 389 28.2 The basics of species distribution models 389 28.2.1 Challenging species distribution models with sparse or rare species 390 28.2.2 Critiques of species distribution models 390 CONTENTS xxi 28.3 Characteristics of carnivorous plants that challenge SDMs 391 28.3.1 Rarity and sparse distributions 391 28.3.2 Habitat specialization 391 28.3.3 Are carnivorous plant distributions constrained by climate? 392 28.4 Species distribution models for carnivorous plants and other rare species 392 28.4.1 Ensembles of small models 393 28.4.2 Controlling complexity and over-fitting 393 28.4.3 Estimating bioclimatic velocity 393 28.5 Modeling exposure of carnivorous plants to climatic change 394 28.5.1 Species occurrence data 394 28.5.2 Climate data 394 28.5.3 Species distribution modeling 395 28.5.4 Ensembles of small models (ESM) 395 28.5.5 Model projections, bioclimatic velocity, and exposure metrics 395 28.6 Results 396 28.6.1 Occurrence data for carnivorous plants 396 28.6.2 Performance of species distribution models for carnivorous plants 396 28.6.3 Vulnerability of carnivorous plants to climatic change 396 28.7 Discussion 402 28.8 Future research 407 29 The future of research with carnivorous plants 408 Aaron M. Ellison and Lubomir Adamec 29.1 Phylogeny, evolution, and convergence 408 29.2 Field observations and experiments 409 29.3 Plant-animal and plant-microbe interactions 409 29.4 Comparisons with noncarnivorous plants 409 Appendix 411 References 435 Acknowledgments 493 Taxonomic Index 497 Subject index 507
any_adam_object 1
author2 Ellison, Aaron M. 1960-
Adamec, Lubomír
author2_role edt
edt
author2_variant a m e am ame
l a la
author_GND (DE-588)173704840
author_facet Ellison, Aaron M. 1960-
Adamec, Lubomír
building Verbundindex
bvnumber BV044723481
classification_rvk WI 4200
ctrlnum (OCoLC)1021827710
(DE-599)BVBBV044723481
discipline Biologie
edition First edition
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01528nam a2200361 c 4500</leader><controlfield tag="001">BV044723481</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190327 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">180120s2018 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198779841</subfield><subfield code="c">hbk</subfield><subfield code="9">978-0-19-877984-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198833727</subfield><subfield code="9">978-0-19-883372-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1021827710</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044723481</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-12</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WI 4200</subfield><subfield code="0">(DE-625)148826:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Carnivorous plants</subfield><subfield code="b">physiology, ecology, and evolution</subfield><subfield code="c">edited by Aaron M. Ellison, Lubomír Adamec</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxvi, 510 Seiten</subfield><subfield code="b">Illustrationen, Diagramme, Karten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fleischfressende Pflanzen</subfield><subfield code="0">(DE-588)4017480-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fleischfressende Pflanzen</subfield><subfield code="0">(DE-588)4017480-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ellison, Aaron M.</subfield><subfield code="d">1960-</subfield><subfield code="0">(DE-588)173704840</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adamec, Lubomír</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=030119699&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030119699</subfield></datafield></record></collection>
genre (DE-588)4143413-4 Aufsatzsammlung gnd-content
genre_facet Aufsatzsammlung
id DE-604.BV044723481
illustrated Illustrated
indexdate 2024-12-24T06:19:28Z
institution BVB
isbn 9780198779841
9780198833727
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030119699
oclc_num 1021827710
open_access_boolean
owner DE-11
DE-355
DE-BY-UBR
DE-188
DE-703
DE-20
DE-12
owner_facet DE-11
DE-355
DE-BY-UBR
DE-188
DE-703
DE-20
DE-12
physical xxxvi, 510 Seiten Illustrationen, Diagramme, Karten
publishDate 2018
publishDateSearch 2018
publishDateSort 2018
publisher Oxford University Press
record_format marc
spellingShingle Carnivorous plants physiology, ecology, and evolution
Fleischfressende Pflanzen (DE-588)4017480-3 gnd
subject_GND (DE-588)4017480-3
(DE-588)4143413-4
title Carnivorous plants physiology, ecology, and evolution
title_auth Carnivorous plants physiology, ecology, and evolution
title_exact_search Carnivorous plants physiology, ecology, and evolution
title_full Carnivorous plants physiology, ecology, and evolution edited by Aaron M. Ellison, Lubomír Adamec
title_fullStr Carnivorous plants physiology, ecology, and evolution edited by Aaron M. Ellison, Lubomír Adamec
title_full_unstemmed Carnivorous plants physiology, ecology, and evolution edited by Aaron M. Ellison, Lubomír Adamec
title_short Carnivorous plants
title_sort carnivorous plants physiology ecology and evolution
title_sub physiology, ecology, and evolution
topic Fleischfressende Pflanzen (DE-588)4017480-3 gnd
topic_facet Fleischfressende Pflanzen
Aufsatzsammlung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030119699&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT ellisonaaronm carnivorousplantsphysiologyecologyandevolution
AT adameclubomir carnivorousplantsphysiologyecologyandevolution