Yangming wen xian hui kan 24

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Zhai, Kuifeng (HerausgeberIn), Xiang, Hui (HerausgeberIn)
Format: Buch
Sprache:Chinese
Veröffentlicht: Chengdu Sichuan da xue chu ban she 2014
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cc4500
001 BV044708371
003 DE-604
005 00000000000000.0
007 t
008 180110s2014 |||| 00||| chi d
020 |a 9787561482674  |9 978-7-5614-8267-4 
035 |a (OCoLC)1019655275 
035 |a (DE-599)BVBBV044708371 
040 |a DE-604  |b ger  |e rda 
041 0 |a chi 
049 |a DE-12 
245 1 0 |a Yangming wen xian hui kan  |n 24  |c Zhai Kuifeng, Xiang Hui zhu bian 
264 1 |a Chengdu  |b Sichuan da xue chu ban she  |c 2014 
300 |a 478 Seiten 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
700 1 |a Zhai, Kuifeng  |4 edt 
700 1 |a Xiang, Hui  |4 edt 
773 0 8 |w (DE-604)BV044428925  |g 24 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030104954&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-030104954 

Datensatz im Suchindex

_version_ 1804178185814802432
adam_text IMAGE 1 CONTENTS 1 INTRODUCTION TO INTELLIGENT SIGNAL PROCESSING AND DATA MINING 1 LYUDMILA MIHAYLOVA, PETIA GEORGIEVA, LAKHMI C. JAIN 1.1 INTRODUCTION 1 1.2 CHAPTERS INCLUDED IN THE BOOK 2 1.3 CONCLUSION 4 1.4 RESOURCES 5 REFERENCES 5 2 MONTE CARLO-BASED BAYESIAN GROUP OBJECT TRACKING AND CAUSAL REASONING 7 AVISHY Y. CARMI, LYUDMILA MIHAYLOVA, AMADOU GNING, PINI GURFIL, SIMON J. GODSILL 2.1 OVERVIEW 7 2.1.1 REASONING ABOUT BEHAVIORAL TRAITS 8 2.1.2 NOVELTIES AND CONTRIBUTIONS 9 2.1.3 MULTIPLE GROUP TRACKING 9 2.2 GROUP TRACKING BY SEQUENTIAL MONTE CARLO (SMC) METHODS AND EVOLVING NETWORKS 11 2.2.1 PROBLEM FORMULATION 12 2.2.2 A NEARLY CONSTANT VELOCITY MODEL FOR INDIVIDUAL TARGETS 13 2.2.3 OBSERVATION MODEL 14 2.2.4 PARTICLE FILTERING ALGORITHMS FOR GROUP MOTION ESTIMATION 14 2.3 THE CLUSTER TRACKING PROBLEM 18 2.4 BAYESIAN FORMULATION 19 2.4.1 LIKELIHOOD DERIVATION 19 2.4.2 MODELING CLUSTER EVOLUTION 2 0 2.4.3 MARKOV CHAIN MONTE CARLO (MCMC) PARTICLE ALGORITHM FOR CLUSTER TRACKING 23 HTTP://D-NB.INFO/1019655275 IMAGE 2 VIII CONTENTS 2.5 BAYESIAN CAUSALITY DETECTION O F GROUP HIERARCHIES 2 6 2.5.1 G-CAUSALITY AND CAUSAL NETWORKS 29 2.5.2 INFERRING CAUSAL RELATIONS FROM EMPIRICAL DATA 31 2.5.3 STRUCTURAL DYNAMIC MODELING 33 2.5.4 DOMINANCE AND SIMILARITY 34 2.5.5 BAYESIAN ESTIMATION O F A.I~ 35 2.5.6 A UNIFIED CAUSAL REASONING AND TRACKING PARADIGM . . . 35 2.6 NUMERICAL STUDY 36 2.7 CONCLUDING REMARKS 4 4 2.8 APPENDIX: ALGORITHMS FOR THE EVOLVING GRAPHS 44 2.8.1 EVOLVING GRAPH MODELS 44 2.8.2 GRAPH INITIALIZATION - MODEL /) 4 5 2.8.3 EDGE UPDATING - MODEL / EU 4 5 2.8.4 NEW NODE INCORPORATION - M O D E L FYI 4 6 2.8.5 OLD NODE SUPPRESSION - MODEL FYS 48 REFERENCES 4 9 3 A SEQUENTIAL MONTE CARLO METHOD FOR MULTI-TARGET TRACKING WITH THE INTENSITY FILTER 55 MAREK SCHIKORA, WOLFGANG KOCH, ROY STREIT, DANIEL CREMERS 3.1 INTRODUCTION 55 3.2 POISSON POINT PROCESSES (PPPS) 57 3.2.1 PPP SAMPLING PROCEDURE 57 3.2.2 PPPS FOR MULTI-TARGET TRACKING 58 3.3 THE INTENSITY FILTER 59 3.3.1 GENERAL OVERVIEW 59 3.3.2 THE SMC-IFILTER 61 3.3.3 RELATIONSHIP TO THE PROBABILITY HYPOTHESIS DENSITY (PHD) FILTER 67 3.4 NUMERICAL STUDIES 68 3.4.1 SCENARIO-1 68 3.4.2 SCENARIO - 2 7 5 3.5 APPLICATIONS 7 6 3.5.1 BEARINGS-ONLY TRACKING 77 3.5.2 VIDEO TRACKING 80 3.6 CONCLUSIONS 85 REFERENCES 85 4 SEQUENTIAL MONTE CARLO METHODS FOR LOCALIZATION IN WIRELESS NETWORKS 89 LYUDMILA MIHAYLOVA, DONKA ANGELOVA, ANNA ZVIKHACHEVSKAYA 4.1 MOTIVATION 89 4.1.1 METHODS FOR LOCALIZATION 9 0 4.2 LOCALIZATION O F MOBILE NODES 92 4.2.1 MOTION MODEL O F THE MOBILE NODES 92 4.2.2 OBSERVATION MODEL 9 3 IMAGE 3 CONTENTS I X 4.2.3 CORRELATED IN TIME MEASUREMENT NOISE 94 4.2.4 MOTION AND OBSERVATION MODELS FOR SIMULTANEOUS LOCALIZATION O F MULTIPLE MOBILE NODES 95 4.3 SEQUENTIAL BAYESIAN FRAMEWORK 95 4.3.1 GENERAL FILTERING FRAMEWORK 95 4.3.2 AUXILIARY MULTIPLE MODEL PARTICLE FILTERING FOR LOCALIZATION 96 4.3.3 APPROACHES TO DEAL WITH THE TIME CORRELATED MEASUREMENT NOISE 98 4.4 ESTIMATION O F THE MEASUREMENT NOISE PARAMETERS 100 4.5 GIBBS SAMPLING FOR NOISE PARAMETER ESTIMATION 101 4.6 PERFORMANCE EVALUATION O F THE GIBBS SAMPLING ALGORITHM FOR MEASUREMENT NOISE PARAMETER ESTIMATION 103 4.6.1 MEASUREMENT NOISE PARAMETER ESTIMATION WITH SIMULATED DATA 103 4.6.2 MEASUREMENT NOISE PARAMETER ESTIMATION WITH REAL DATA 106 4.7 PERFORMANCE EVALUATION OF THE MULTIPLE MODEL AUXILIARY PARTICLE FILTER 108 4.7.1 RESULTS WITH SIMULATED DATA 109 4.7.2 RESULTS WITH REAL DATA 112 4.8 CONCLUSIONS 114 REFERENCES 115 5 A SEQUENTIAL MONTE CARLO APPROACH FOR BRAIN SOURCE LOCALIZATION 119 PETIA GEORGIEVA, LYUDMILA MIHAYLOVA, FILIPE SILVA, MARIOFANNA MILANOVA, NUNO FIGUEIREDO, LAKHMI C. JAIN 5.1 INTRODUCTION 120 5.2 SEQUENTIAL MONTE CARLO PROBLEM FORMULATION 121 5.3 THE STATE SPACE ELECTROENCEPHALOGRAPHY (EEG) SOURCE LOCALIZATION MODEL 125 5.4 BEAMFORMING AS A SPATIAL FILTER 128 5.5 EXPERIMENTAL RESULTS 130 5.6 CONCLUSIONS 136 REFERENCES 137 6 COMPUTATIONAL INTELLIGENCE IN AUTOMOTIVE APPLICATIONS 139 YIFEI WANG, NAIRN DAHNOUN, ALIN ACHIM 6.1 INTRODUCTION 139 6.1.1 LANE DETECTION 139 6.1.2 LANE TRACKING 141 6.1.3 CHAPTER STRUCTURE 142 6.2 LANE MODELLING 142 6.3 LANE FEATURE EXTRACTION 147 6.3.1 THEORETICAL PRELIMINARIES 149 IMAGE 4 X CONTENTS 6.3.2 VANISHING POINT DETECTION 150 6.3.3 FEATURE EXTRACTION 152 6.4 LANE MODEL PARAMETER ESTIMATION 155 6.5 LANE TRACKING 157 6.5.1 TIME UPDATE 159 6.5.2 MEASUREMENT UPDATE 160 6.5.3 PARAMETER SELECTION 162 6.6 EXPERIMENTAL RESULTS 162 6.6.1 LANE FEATURE EXTRACTION RESULTS 162 6.6.2 LANE MODEL PARAMETER ESTIMATION RESULTS 165 6.6.3 LANE TRACKING RESULTS 167 6.7 CONCLUSIONS 172 REFERENCES 173 7 DETECTING ANOMALIES IN SENSOR SIGNALS USING DATABASE TECHNOLOGY 175 GEREON SCHIILLER, ANDREAS BEHREND, WOLFGANG KOCH 7.1 INTRODUCTION 175 7.2 DRIVING FACTORS FOR A TRACKING AND AWARENESS SYSTEM 176 7.3 CRITERIA FOR ANOMALY DETECTION 178 7.3.1 PATTERN BASED FILTERING FOR IMPROVED CLASSIFICATION AND THREAT DETECTION 178 7.3.2 VIOLATION O F SPACE-TIME REGULARITY PATTERNS 180 7.3.3 EXPLOITING POOR-RESOLUTION SENSOR ATTRIBUTES 180 7.3.4 VARYING CRITERIA AND THE NEED FOR FLEXIBILITY 181 7.4 RELATIONAL DBMSS FOR PROCESSING SENSOR DATA 181 7.4.1 RELATIONAL DATABASES AND RELATIONAL ALGEBRA 182 7.5 EXPRESSING ANOMALIES IN RELATIONAL ALGEBRA 184 7.5.1 VELOCITY/ACCELERATION CLASSIFICATION 184 7.5.2 CONTEXT INFORMATION AND SEVERAL SENSORS 184 7.5.3 INCREMENTAL EVALUATION O F RELATIONAL QUERIES 185 7.6 ANOMALY DETECTION FOR IMPROVING AIR TRAFFIC SAFETY 187 7.6.1 PROBLEM SETTING 187 7.6.2 VIEW-BASED FLIGHT ANALYSIS 190 7.6.3 ENHANCING ROBUSTNESS AND TRACK PRECISION 191 7.6.4 HISTORY MANAGEMENT 193 7.6.5 EXPERIENCES 194 7.7 FUTURE WORK AND CONCLUSION 194 REFERENCES 195 8 HIERARCHICAL CLUSTERING FOR LARGE DATA SETS 1 97 MARK J. EMBRECHTS, CHRISTOPHER J. GATTI, JONATHAN LINTON, BADRINATH ROYSAM 8.1 INTRODUCTION 197 8.2 INTRODUCTION TO CLUSTERING 198 8.3 HIERARCHICAL CLUSTERING 202 IMAGE 5 CONTENTS X I 8.4 DISPLAYING HIERARCHICAL CLUSTERING WITH DENDROGRAMS 207 8.4.1 DATA REORDERING 209 8.4.2 LEAF REORDERING 210 8.5 DATA SETS 211 8.6 CLUSTER PLOTS 213 8.6.1 CARTOON CLUSTER PLOT 214 8.6.2 TIMELINE ANALYSIS WITH PRINCIPAL COMPONENTS ANALYSIS 215 8.6.3 BICLUSTER PLOTS 216 8.7 ASSESSING CLUSTER QUALITY WITH CLUSTER EVALUATION INDICES 216 8.7.1 INTERNAL CLUSTER VALIDATION INDICES 218 8.7.2 EXTERNAL CLUSTER VALIDATION INDICES 222 , 8.8 SPEEDING UP HIERARCHICAL CLUSTERING WITH CLUSTER SEEDING 224 8.8.1 SCALING O F HIERARCHICAL CLUSTERING IN MEMORY AND TIME 224 8.8.2 SPEEDING UP HIERARCHICAL CLUSTERING 225 8.8.3 IMPROVING THE SCALING O F COMPUTING TIME FOR THE SAHN ALGORITHM WITH CLUSTER SEEDING 226 8.8.4 IMPROVING THE SCALING O F MEMORY FOR THE SAHN ALGORITHM WITH A DIVIDE AND CONQUER APPROACH 228 8.9 CONCLUSIONS 229 REFERENCES 230 9 A NOVEL FRAMEWORK FOR OBJECT RECOGNITION UNDER SEVERE OCCLUSION 235 STAMATIA GIANNAROU, TARIIA STCITHAKI 9.1 INTRODUCTION 235 9.2 PRIOR WORK ON SHAPE ANALYSIS AND IDENTIFICATION 236 9.3 SHAPE CONTEXT REPRESENTATION AND MATCHING 238 9.3.1 SHAPE CONTEXT DESCRIPTOR 238 9.3.2 MANY-TO-ONE EDGE POINT MATCHING 240 9.4 CLUSTERING O F THE MATCHED POINTS ON THE COMPLEX SCENE 242 9.5 OBJECT IDENTIFICATION 244 9.5.1 CLUSTER ELIMINATION BASED ON CLUSTER-ACTIVITY ESTIMATION 244 9.5.2 CLUSTER SELECTION FOR THE IDENTIFICATION O F SUSPICIOUS REGIONS 247 9.6 EXPERIMENTAL RESULTS 251 9.7 DISCUSSION 257 REFERENCES 257 10 HISTORICAL CONSISTENT NEURAL NETWORKS: NEW PERSPECTIVES ON MARKET MODELING, FORECASTING AND RISK ANALYSIS 259 HANS-GEORG ZIMMERMANN, CHRISTOPH TIETZ, RALPH GROTHMANN 10.1 INTRODUCTION 259 10.2 HISTORICAL CONSISTENT NEURAL NETWORKS (HCNN) 260 IMAGE 6 X I I C O N T E N T S 10.2.1 MODELING OPEN DYNAMIC SYSTEMS WITH RECURRENT NEURAL NETWORKS (RNN) 261 10.2.2 MODELING OF CLOSED DYNAMIC SYSTEMS WITH HCNN . . . . 263 10.3 APPLICATIONS IN FINANCIAL MARKETS 269 10.3.1 PRICE FORECASTS FOR PROCUREMENT 269 10.3.2 RISK MANAGEMENT 271 10.4 SUMMARY AND OUTLOOK 273 REFERENCES 273 11 REINFORCEMENT LEARNING WITH NEURAL NETWORKS: TRICKS O F THE TRADE 275 CHRISTOPHER J. GATTI, MARK J. EMBRECHTS 11.1 INTRODUCTION 275 11.2 OVERVIEW O F REINFORCEMENT LEARNING 276 11.2.1 SEQUENTIAL DECISION PROCESSES 278 11.2.2 REINFORCEMENT LEARNING WITH A NEURAL NETWORK 280 11.3 IMPLEMENTING REINFORCEMENT LEARNING 281 11.3.1 ENVIRONMENT REPRESENTATION 281 11.3.2 AGENT REPRESENTATION 285 11.4 EXAMPLES O F REINFORCEMENT LEARNING 297 11.4.1 TIC-TAC-TOE 297 11.4.2 CHUNG TOI 301 11.4.3 APPLYING/EXTENDING TO OTHER GAMES/SCENARIOS 305 11.5 SUMMARY 308 REFERENCES 309 12 SLIDING EMPIRICAL MODE DECOMPOSITION-BRAIN STATUS DATA ANALYSIS AND MODELING 311 A. ZEILER, R. FALTERMEIER, A.M. TOME, I.R. KECK, C. PUNTONET, A. BRAWANSKI, E. W. LANG 12.1 INTRODUCTION 311 12.1.1 EMPIRICAL MODE DECOMPOSITION 311 12.1.2 NEUROMONITORING 312 12.1.3 DYNAMIC CEREBRAL AUTOREGULATION 313 12.1.4 MODELING O F CEREBRAL CIRCULATION AND OXYGEN SUPPLY 313 12.2 EMPIRICAL MODE DECOMPOSITION 315 12.2.1 THE STANDARD EMPIRICAL MODE DECOMPOSITION (EMD) ALGORITHM 316 12.2.2 THE HILBERT - HUANG TRANSFORM 317 12.2.3 ENSEMBLE EMPIRICAL MODE DECOMPOSITION 318 12.3 SLIDING EMPIRICAL MODE DECOMPOSITION 319 12.3.1 THE PRINCIPLE O F SLIDING EMPIRICAL MODE DECOMPOSITION (SEMD) 320 12.3.2 PROPERTIES OF SEMD 323 IMAGE 7 CONTENTS X I I I 12.3.3 APPLICATION O F SEMD TO TOY DATA 323 12.3.4 PERFORMANCE EVALUATION O F SEMD 327 12.4 WEIGHTED SLIDING EMD 329 12.4.1 ERROR RANGE O F EMD 330 12.4.2 THE PRINCIPLE O F WEIGHTED SEMD 332 12.4.3 PERFORMANCE EVALUATION OF WEIGHTED SEMD 332 12.4.4 COMPLETENESS 335 12.4.5 EXAMINATION OF THE INTRINSIC MODE FUNCTIONS (IMF) CRITERIA 335 12.5 ANALYSIS O F BRAIN STATUS DATA 337 12.5.1 EEMD APPLIED TO BRAIN STATUS DATA 337 12.5.2 SEMD APPLIED TO BRAIN STATUS DATA 342 REFERENCES 348 AUTHOR INDEX 35 1
any_adam_object 1
author2 Zhai, Kuifeng
Xiang, Hui
author2_role edt
edt
author2_variant k z kz
h x hx
author_facet Zhai, Kuifeng
Xiang, Hui
building Verbundindex
bvnumber BV044708371
ctrlnum (OCoLC)1019655275
(DE-599)BVBBV044708371
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01023nam a2200289 cc4500</leader><controlfield tag="001">BV044708371</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180110s2014 |||| 00||| chi d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9787561482674</subfield><subfield code="9">978-7-5614-8267-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1019655275</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044708371</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">chi</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Yangming wen xian hui kan</subfield><subfield code="n">24</subfield><subfield code="c">Zhai Kuifeng, Xiang Hui zhu bian</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chengdu</subfield><subfield code="b">Sichuan da xue chu ban she</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">478 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhai, Kuifeng</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiang, Hui</subfield><subfield code="4">edt</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV044428925</subfield><subfield code="g">24</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=030104954&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030104954</subfield></datafield></record></collection>
id DE-604.BV044708371
illustrated Not Illustrated
indexdate 2024-07-10T07:59:57Z
institution BVB
isbn 9787561482674
language Chinese
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030104954
oclc_num 1019655275
open_access_boolean
owner DE-12
owner_facet DE-12
physical 478 Seiten
publishDate 2014
publishDateSearch 2014
publishDateSort 2014
publisher Sichuan da xue chu ban she
record_format marc
spelling Yangming wen xian hui kan 24 Zhai Kuifeng, Xiang Hui zhu bian
Chengdu Sichuan da xue chu ban she 2014
478 Seiten
txt rdacontent
n rdamedia
nc rdacarrier
Zhai, Kuifeng edt
Xiang, Hui edt
(DE-604)BV044428925 24
DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030104954&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Yangming wen xian hui kan
title Yangming wen xian hui kan
title_auth Yangming wen xian hui kan
title_exact_search Yangming wen xian hui kan
title_full Yangming wen xian hui kan 24 Zhai Kuifeng, Xiang Hui zhu bian
title_fullStr Yangming wen xian hui kan 24 Zhai Kuifeng, Xiang Hui zhu bian
title_full_unstemmed Yangming wen xian hui kan 24 Zhai Kuifeng, Xiang Hui zhu bian
title_short Yangming wen xian hui kan
title_sort yangming wen xian hui kan
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030104954&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV044428925
work_keys_str_mv AT zhaikuifeng yangmingwenxianhuikan24
AT xianghui yangmingwenxianhuikan24